期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于PGM-NMF的网络流量异常检测研究 被引量:2
1
作者 王晓鸽 《电子科技》 2014年第5期175-178,共4页
通过对网络流量数据进行采样,小波空间变化过滤噪声,构建了基于信息熵的网络流量矩阵,使用PGM-NMF算法对网络流量矩阵进行分解,构建的基于非负子空间方法的残余矩阵,应用Q图实现网络流量的异常检测。理论分析及实验结果表明,与PCA方法相... 通过对网络流量数据进行采样,小波空间变化过滤噪声,构建了基于信息熵的网络流量矩阵,使用PGM-NMF算法对网络流量矩阵进行分解,构建的基于非负子空间方法的残余矩阵,应用Q图实现网络流量的异常检测。理论分析及实验结果表明,与PCA方法相比,PGM-NMF算法在网络流量的异常检测中具有较好检测性能。 展开更多
关键词 PGA-NMF算法 网络流量矩阵 残余矩阵 异常检测模型 Q图
下载PDF
Energy-Aware Traffic Routing with Named Data Networking 被引量:2
2
作者 Song Yunlong Liu Min 《China Communications》 SCIE CSCD 2012年第6期71-81,共11页
Greening Internet is an important issue now, which studies the way to reduce the increas- ing energy expenditure. Our work focuses on the network infrastructure and considers its energy awareness in traffic routing. W... Greening Internet is an important issue now, which studies the way to reduce the increas- ing energy expenditure. Our work focuses on the network infrastructure and considers its energy awareness in traffic routing. We formulate the model by traffic engineering to achieve link rate a- daption, and also predict traffic matrices to pre- serve network stability. However, we realize that there is a tradeoff between network performance and energy efficiency, which is an obvious issue as Internet grows larger and larger. An essential cause is the huge traffic, and thus we try to fred its so- lution from a novel architecture called Named Data Networking (NDN) which tent in edge routers and can flexibly cache con- decrease the backbone traffic. We combine our methods with NDN, and finally improve both the network performance and the energy efficiency. Our work shows that it is effective, necessary and feasible to consider green- ing idea in the design of future Internet. 展开更多
关键词 Greening Internet energy-aware traf-fic routing Named Data Networking traffic matri-ces prediction link stability
下载PDF
Traffic Matrix Estimation for IP-over-WDM Networks via Optical Bypass Techniques
3
作者 Laisen Nie Dingde Jiang Lei Guo 《China Communications》 SCIE CSCD 2016年第7期7-15,共9页
A traffic matrix is a necessary parameter fornetwork management functions,and itsupplies a flow-level view of a largescale IP-over-WDM backbone network.This paper studies the problem of traffic matrix estimationand pr... A traffic matrix is a necessary parameter fornetwork management functions,and itsupplies a flow-level view of a largescale IP-over-WDM backbone network.This paper studies the problem of traffic matrix estimationand proposes an exact traffic matrix estimation approach based on network tomography techniques.The traditional network tomography model is extended to make it compatible with compressive sensing constraints.First,a stochastic perturbation is introduced in the traditional network tomography inference model.Then,an algorithm is proposed to achieve additional optical link observations via optical bypass techniques.The obtained optical link observations are used as extensions for the perturbed network tomography model to ensure that the synthetic model can meetcompressive sensing constraints.Finally,the traffic matrix is estimated from the synthetic model by means of a compressive sensing recovery algorithm. 展开更多
关键词 traffic characterization traffic analysis compressive sensing
下载PDF
Data Reconstruction in Internet Traffic Matrix 被引量:1
4
作者 ZHOU Huibin ZHANG Dafang XIE Kun WANG Xiaoyang 《China Communications》 SCIE CSCD 2014年第7期1-12,共12页
Traffic matrix is an abstract representation of the traffic volume flowing between sets of source and destination pairs.It is a key input parameter of network operations management,planning,provisioning and traffic en... Traffic matrix is an abstract representation of the traffic volume flowing between sets of source and destination pairs.It is a key input parameter of network operations management,planning,provisioning and traffic engineering.Traffic matrix is also important in the context of OpenFlow-based networks.Because even good measurement systems can suffer from errors and data collection systems can fail,missing values are common.Existing matrix completion methods do not consider traffic exhibit characteristics and only provide a finite precision.To address this problem,this paper proposes a novel approach based on compressive sensing and traffic self-similarity to reconstruct the missing traffic flow data.Firstly,we analyze the realworld traffic matrix,which all exhibit lowrank structure,temporal smoothness feature and spatial self-similarity.Then,we propose Self-Similarity and Temporal Compressive Sensing(SSTCS) algorithm to reconstruct the missing traffic data.The extensive experiments with the real-world traffic matrix show that our proposed SSTCS can significantly reduce data reconstruction errors and achieve satisfactory accuracy comparing with the existing solutions.Typically SSTCS can successfully reconstruct the traffic matrix with less than 32%errors when as much as98%of the data is missing. 展开更多
关键词 network measurement trafficmatrix compressive sensing matrixcompletion SELF-SIMILARITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部