随着信息产业的大数据业务发展,传统的网络资源已经不能满足人们的要求,新一代网络体系必将发生变革并产生新一代网络(NGN),动态多太比特核心光网络(CORONET)计划是由美国提出来的新的一代网络计划,主要是寻求高度动态、多太比特核心光...随着信息产业的大数据业务发展,传统的网络资源已经不能满足人们的要求,新一代网络体系必将发生变革并产生新一代网络(NGN),动态多太比特核心光网络(CORONET)计划是由美国提出来的新的一代网络计划,主要是寻求高度动态、多太比特核心光网络体系结构、协议、控制和管理的方案。利用波分复用(WDM)带宽资源和强大的波长路由能力,构造一个全球范围的核心光网络,即连接全球范围内主要站点的大容量、长距离基础设施。将IP over WDM的全光交换技术应用到CORONET网络系统中,采用的三次握手分布信号协议方法(3WHS)通过动态链接可以达到百毫秒级的快速建立时间并极大提高网络安全。最后,借鉴该网络计划的发展情况阐述对我们国家光网络发展所带来的启示。展开更多
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea...In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.展开更多
The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning al...The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning algorithms after artificial feature extraction.However,guaranteeing the effectiveness of the extracted features is difficult.The current trend focuses on using a convolution neural network to automatically extract features for classification.This method can be used to extract signal spatial features automatically through a convolution kernel;however,infrasound signals contain not only spatial information but also temporal information when used as a time series.These extracted temporal features are also crucial.If only a convolution neural network is used,then the time dependence of the infrasound sequence will be missed.Using long short-term memory networks can compensate for the missing time-series features but induces spatial feature information loss of the infrasound signal.A multiscale squeeze excitation–convolution neural network–bidirectional long short-term memory network infrasound event classification fusion model is proposed in this study to address these problems.This model automatically extracted temporal and spatial features,adaptively selected features,and also realized the fusion of the two types of features.Experimental results showed that the classification accuracy of the model was more than 98%,thus verifying the effectiveness and superiority of the proposed model.展开更多
In order to solve the problem of the lack of ornamental value and research value of ancient mural paintings due to low resolution and fuzzy texture details,a super resolution(SR)method based on generative adduction ne...In order to solve the problem of the lack of ornamental value and research value of ancient mural paintings due to low resolution and fuzzy texture details,a super resolution(SR)method based on generative adduction network(GAN)was proposed.This method reconstructed the detail texture of mural image better.Firstly,in view of the insufficient utilization of shallow image features,information distillation blocks(IDB)were introduced to extract shallow image features and enhance the output results of the network behind.Secondly,residual dense blocks with residual scaling and feature fusion(RRDB-Fs)were used to extract deep image features,which removed the BN layer in the residual block that affected the quality of image generation,and improved the training speed of the network.Furthermore,local feature fusion and global feature fusion were applied in the generation network,and the features of different levels were merged together adaptively,so that the reconstructed image contained rich details.Finally,in calculating the perceptual loss,the brightness consistency between the reconstructed fresco and the original fresco was enhanced by using the features before activation,while avoiding artificial interference.The experimental results showed that the peak signal-to-noise ratio and structural similarity metrics were improved compared with other algorithms,with an improvement of 0.512 dB-3.016 dB in peak signal-to-noise ratio and 0.009-0.089 in structural similarity,and the proposed method had better visual effects.展开更多
To address the limitation of single acceleration sensor signals in effectively reflecting the health status of rolling bearings,a rolling bearing fault diagnosis method based on the fusion of data-level and feature-le...To address the limitation of single acceleration sensor signals in effectively reflecting the health status of rolling bearings,a rolling bearing fault diagnosis method based on the fusion of data-level and feature-level information was proposed.First,according to the impact characteristics of rolling bearing faults,correlation kurtosis rules were designed to guide the weight distribution of multi-sensor signals.These rules were then combined with a weighted fusion method to obtain high-quality data-level fusion signals.Subsequently,a feature-fusion convolutional neural network(FFCNN)that merges the one-dimensional(1D)features extracted from the fused signal with the two-dimensional(2D)features extracted from the wavelet time-frequency spectrum was designed to obtain a comprehensive representation of the health status of rolling bearings.Finally,the fused features were fed into a Softmax classifier to complete the fault diagnosis.The results show that the proposed method exhibits an average test accuracy of over 99.00%on the two rolling bearing fault datasets,outperforming other comparison methods.Thus,the method can be effectively utilized for diagnosing rolling bearing faults.展开更多
An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depen...An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depends on the analysis of various color features from each tested color image via the designed feature encoding. It is different from the pervious methods where self organized feature map (SOFM) is used for constructing the feature encoding so that the feature encoding can self organize the effective features for different color images. Fuzzy clustering is applied for the final segmentation when the well suited color features and the initial parameter are available. The proposed method has been applied in segmenting different types of color images and the experimental results show that it outperforms the classical clustering method. The study shows that the feature encoding approach offers great promise in automating and optimizing the segmentation of color images.展开更多
In order to decrease vehicle crashes, a new rear view vehicle detection system based on monocular vision is designed. First, a small and flexible hardware platform based on a DM642 digtal signal processor (DSP) micr...In order to decrease vehicle crashes, a new rear view vehicle detection system based on monocular vision is designed. First, a small and flexible hardware platform based on a DM642 digtal signal processor (DSP) micro-controller is built. Then, a two-step vehicle detection algorithm is proposed. In the first step, a fast vehicle edge and symmetry fusion algorithm is used and a low threshold is set so that all the possible vehicles have a nearly 100% detection rate (TP) and the non-vehicles have a high false detection rate (FP), i. e., all the possible vehicles can be obtained. In the second step, a classifier using a probabilistic neural network (PNN) which is based on multiple scales and an orientation Gabor feature is trained to classify the possible vehicles and eliminate the false detected vehicles from the candidate vehicles generated in the first step. Experimental results demonstrate that the proposed system maintains a high detection rate and a low false detection rate under different road, weather and lighting conditions.展开更多
文摘随着信息产业的大数据业务发展,传统的网络资源已经不能满足人们的要求,新一代网络体系必将发生变革并产生新一代网络(NGN),动态多太比特核心光网络(CORONET)计划是由美国提出来的新的一代网络计划,主要是寻求高度动态、多太比特核心光网络体系结构、协议、控制和管理的方案。利用波分复用(WDM)带宽资源和强大的波长路由能力,构造一个全球范围的核心光网络,即连接全球范围内主要站点的大容量、长距离基础设施。将IP over WDM的全光交换技术应用到CORONET网络系统中,采用的三次握手分布信号协议方法(3WHS)通过动态链接可以达到百毫秒级的快速建立时间并极大提高网络安全。最后,借鉴该网络计划的发展情况阐述对我们国家光网络发展所带来的启示。
文摘In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.
基金supported by the Shaanxi Province Natural Science Basic Research Plan Project(2023-JC-YB-244).
文摘The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning algorithms after artificial feature extraction.However,guaranteeing the effectiveness of the extracted features is difficult.The current trend focuses on using a convolution neural network to automatically extract features for classification.This method can be used to extract signal spatial features automatically through a convolution kernel;however,infrasound signals contain not only spatial information but also temporal information when used as a time series.These extracted temporal features are also crucial.If only a convolution neural network is used,then the time dependence of the infrasound sequence will be missed.Using long short-term memory networks can compensate for the missing time-series features but induces spatial feature information loss of the infrasound signal.A multiscale squeeze excitation–convolution neural network–bidirectional long short-term memory network infrasound event classification fusion model is proposed in this study to address these problems.This model automatically extracted temporal and spatial features,adaptively selected features,and also realized the fusion of the two types of features.Experimental results showed that the classification accuracy of the model was more than 98%,thus verifying the effectiveness and superiority of the proposed model.
文摘In order to solve the problem of the lack of ornamental value and research value of ancient mural paintings due to low resolution and fuzzy texture details,a super resolution(SR)method based on generative adduction network(GAN)was proposed.This method reconstructed the detail texture of mural image better.Firstly,in view of the insufficient utilization of shallow image features,information distillation blocks(IDB)were introduced to extract shallow image features and enhance the output results of the network behind.Secondly,residual dense blocks with residual scaling and feature fusion(RRDB-Fs)were used to extract deep image features,which removed the BN layer in the residual block that affected the quality of image generation,and improved the training speed of the network.Furthermore,local feature fusion and global feature fusion were applied in the generation network,and the features of different levels were merged together adaptively,so that the reconstructed image contained rich details.Finally,in calculating the perceptual loss,the brightness consistency between the reconstructed fresco and the original fresco was enhanced by using the features before activation,while avoiding artificial interference.The experimental results showed that the peak signal-to-noise ratio and structural similarity metrics were improved compared with other algorithms,with an improvement of 0.512 dB-3.016 dB in peak signal-to-noise ratio and 0.009-0.089 in structural similarity,and the proposed method had better visual effects.
基金The National Natural Science Foundation of China(No.U22A20178)National Key Research and Development Program of China(No.2022YFB3404800)Jiangsu Province Science and Technology Achievement Transformation Special Fund Program(No.BA2023019).
文摘To address the limitation of single acceleration sensor signals in effectively reflecting the health status of rolling bearings,a rolling bearing fault diagnosis method based on the fusion of data-level and feature-level information was proposed.First,according to the impact characteristics of rolling bearing faults,correlation kurtosis rules were designed to guide the weight distribution of multi-sensor signals.These rules were then combined with a weighted fusion method to obtain high-quality data-level fusion signals.Subsequently,a feature-fusion convolutional neural network(FFCNN)that merges the one-dimensional(1D)features extracted from the fused signal with the two-dimensional(2D)features extracted from the wavelet time-frequency spectrum was designed to obtain a comprehensive representation of the health status of rolling bearings.Finally,the fused features were fed into a Softmax classifier to complete the fault diagnosis.The results show that the proposed method exhibits an average test accuracy of over 99.00%on the two rolling bearing fault datasets,outperforming other comparison methods.Thus,the method can be effectively utilized for diagnosing rolling bearing faults.
文摘An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depends on the analysis of various color features from each tested color image via the designed feature encoding. It is different from the pervious methods where self organized feature map (SOFM) is used for constructing the feature encoding so that the feature encoding can self organize the effective features for different color images. Fuzzy clustering is applied for the final segmentation when the well suited color features and the initial parameter are available. The proposed method has been applied in segmenting different types of color images and the experimental results show that it outperforms the classical clustering method. The study shows that the feature encoding approach offers great promise in automating and optimizing the segmentation of color images.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(2009BAG13A04)Jiangsu Transportation Science Research Program(No.08X09)Program of Suzhou Science and Technology(No.SG201076)
文摘In order to decrease vehicle crashes, a new rear view vehicle detection system based on monocular vision is designed. First, a small and flexible hardware platform based on a DM642 digtal signal processor (DSP) micro-controller is built. Then, a two-step vehicle detection algorithm is proposed. In the first step, a fast vehicle edge and symmetry fusion algorithm is used and a low threshold is set so that all the possible vehicles have a nearly 100% detection rate (TP) and the non-vehicles have a high false detection rate (FP), i. e., all the possible vehicles can be obtained. In the second step, a classifier using a probabilistic neural network (PNN) which is based on multiple scales and an orientation Gabor feature is trained to classify the possible vehicles and eliminate the false detected vehicles from the candidate vehicles generated in the first step. Experimental results demonstrate that the proposed system maintains a high detection rate and a low false detection rate under different road, weather and lighting conditions.