随着互联网技术的迅速发展和普及,越来越多的用户开始通过社会网络进行各种信息的分享与交流。网络中同一用户可能申请多个不同账号进行信息发布,这些账号构成了网络中的关联用户。准确、有效地挖掘社会网络中的关联用户能够抑制网络中...随着互联网技术的迅速发展和普及,越来越多的用户开始通过社会网络进行各种信息的分享与交流。网络中同一用户可能申请多个不同账号进行信息发布,这些账号构成了网络中的关联用户。准确、有效地挖掘社会网络中的关联用户能够抑制网络中的虚假信息和不法行为,从而保证网络环境的安全性和公平性。现有的关联用户挖掘方法仅考虑了用户属性或用户关系信息,未对网络中含有的多类信息进行有效融合以及综合考虑。此外,大多数方法借鉴其他领域的方法进行研究,如去匿名化问题,这些方法不能准确解决关联用户挖掘问题。为此,文中针对网络关联用户挖掘问题,提出了基于多信息融合表示学习的关联用户挖掘算法(Associated Users Mining Algorithm based on Multi-information fusion Representation Learning,AUMA-MRL)。该算法使用网络表示学习的思想对网络中多种不同维度的信息(如用户属性、网络拓扑结构等)进行学习,并将学习得到的表示进行有效融合,从而得到多信息融合的节点嵌入。这些嵌入可以准确表征网络中的多类信息,基于习得的节点嵌入构造相似性向量,从而对网络中的关联用户进行挖掘。文中基于3个真实网络数据对所提算法进行验证,实验网络数据包括蛋白质网络PPI以及社交网络Flickr和Facebook,使用关联用户挖掘结果的精度和召回率作为性能评价指标对所提算法进行有效性验证。结果表明,与现有经典算法相比,所提算法的召回率平均提高了17.5%,能够对网络中的关联用户进行有效挖掘。展开更多
With the social media networks development quickly, the followers of the social media network' s behaviors have taken a lot of damagers and threats to national security, and made the nation into unstable situations, ...With the social media networks development quickly, the followers of the social media network' s behaviors have taken a lot of damagers and threats to national security, and made the nation into unstable situations, even subverted the national sovereignty .This paper analyzes the characters of the followers of the social media in the Ira, Tunisia, Egypt and Libya's turmoil, concludes constructive suggestions how to ensure national stability and harmonious development, has some positive effect to our national security.展开更多
As an extension of wireless ad hoc and sensor networks, wireless mesh networks(WMNs) are employed as an emerging key solution for wireless broadband connectivity improvement. Due to the lack of physical security guara...As an extension of wireless ad hoc and sensor networks, wireless mesh networks(WMNs) are employed as an emerging key solution for wireless broadband connectivity improvement. Due to the lack of physical security guarantees, WMNs are susceptible to various kinds of attack. In this paper, we focus on node social selfish attack, which decreases network performance significantly. Since this type of attack is not obvious to detect, we propose a security routing scheme based on social network and reputation evaluation to solve this attack issue. First, we present a dynamic reputation model to evaluate a node's routing behavior, from which we can identify selfish attacks and selfish nodes. Furthermore, a social characteristic evaluation model is studied to evaluate the social relationship among nodes. Groups are built based on the similarity of node social status and we can get a secure routing based on these social groups of nodes. In addition, in our scheme, nodes are encouraged to enter into multiple groups and friend nodes are recommended to join into groups to reduce the possibility of isolated nodes. Simulation results demonstrate that our scheme is able to reflect node security status, and routings are chosen and adjusted according to security status timely and accurately so that the safety and reliability of routing are improved.展开更多
文摘随着互联网技术的迅速发展和普及,越来越多的用户开始通过社会网络进行各种信息的分享与交流。网络中同一用户可能申请多个不同账号进行信息发布,这些账号构成了网络中的关联用户。准确、有效地挖掘社会网络中的关联用户能够抑制网络中的虚假信息和不法行为,从而保证网络环境的安全性和公平性。现有的关联用户挖掘方法仅考虑了用户属性或用户关系信息,未对网络中含有的多类信息进行有效融合以及综合考虑。此外,大多数方法借鉴其他领域的方法进行研究,如去匿名化问题,这些方法不能准确解决关联用户挖掘问题。为此,文中针对网络关联用户挖掘问题,提出了基于多信息融合表示学习的关联用户挖掘算法(Associated Users Mining Algorithm based on Multi-information fusion Representation Learning,AUMA-MRL)。该算法使用网络表示学习的思想对网络中多种不同维度的信息(如用户属性、网络拓扑结构等)进行学习,并将学习得到的表示进行有效融合,从而得到多信息融合的节点嵌入。这些嵌入可以准确表征网络中的多类信息,基于习得的节点嵌入构造相似性向量,从而对网络中的关联用户进行挖掘。文中基于3个真实网络数据对所提算法进行验证,实验网络数据包括蛋白质网络PPI以及社交网络Flickr和Facebook,使用关联用户挖掘结果的精度和召回率作为性能评价指标对所提算法进行有效性验证。结果表明,与现有经典算法相比,所提算法的召回率平均提高了17.5%,能够对网络中的关联用户进行有效挖掘。
基金This paper is supported by the National Social Science Foundation Project--Research on Network Association and the Stability and Development of Ethnic Minority Area in China's Borderland--Take Yunnan Area as an example (No. 09CZZ011 ), and the Key Project of Educational Department of Yunnan Province--Research on the policemen working mode guided by intelligence (No. 2010Z089).
文摘With the social media networks development quickly, the followers of the social media network' s behaviors have taken a lot of damagers and threats to national security, and made the nation into unstable situations, even subverted the national sovereignty .This paper analyzes the characters of the followers of the social media in the Ira, Tunisia, Egypt and Libya's turmoil, concludes constructive suggestions how to ensure national stability and harmonious development, has some positive effect to our national security.
基金supported in part by National Natural Science Foundation of China(Grant Nos.61302071,61471109,61502075)Fundamental Research Funds for the Central Universities(Grant Nos.N150404015,DUT15QY06,DUT15RC(3)009)+2 种基金China Postdoctoral Science Foundation Funded Project(Grant No.2015M580224)Liaoning Province Doctor Startup Fund(Grant No.201501166)State Key Laboratory for Novel Software Technology,Nanjing University(Grant No.KFKT2015B12)
文摘As an extension of wireless ad hoc and sensor networks, wireless mesh networks(WMNs) are employed as an emerging key solution for wireless broadband connectivity improvement. Due to the lack of physical security guarantees, WMNs are susceptible to various kinds of attack. In this paper, we focus on node social selfish attack, which decreases network performance significantly. Since this type of attack is not obvious to detect, we propose a security routing scheme based on social network and reputation evaluation to solve this attack issue. First, we present a dynamic reputation model to evaluate a node's routing behavior, from which we can identify selfish attacks and selfish nodes. Furthermore, a social characteristic evaluation model is studied to evaluate the social relationship among nodes. Groups are built based on the similarity of node social status and we can get a secure routing based on these social groups of nodes. In addition, in our scheme, nodes are encouraged to enter into multiple groups and friend nodes are recommended to join into groups to reduce the possibility of isolated nodes. Simulation results demonstrate that our scheme is able to reflect node security status, and routings are chosen and adjusted according to security status timely and accurately so that the safety and reliability of routing are improved.