With the popularization of the Intemet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society...With the popularization of the Intemet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society, physical space, and cyberspace, the information environment related to the current development of artificial intelligence (AI) has profoundly changed. AI faces important adjustments, and scientific foundations are confronted with new breakthroughs, as AI enters a new stage: AI 2.0. This paper briefly reviews the 60-year developmental history of AI, analyzes the external environment promoting the formation of AI 2.0 along with changes in goals, and describes both the beginning of the technology and the core idea behind AI 2.0 development. Furthermore, based on combined social demands and the information environment that exists in relation to Chinese development, suggestions on the develoDment of Al 2.0 are given.展开更多
The harsh space radiation environment compromises the reliability of an on-board switching fabric by leading to cross-point and switching element(SE)faults.Different from traditional faulttolerant switching fabrics on...The harsh space radiation environment compromises the reliability of an on-board switching fabric by leading to cross-point and switching element(SE)faults.Different from traditional faulttolerant switching fabrics only taking crosspoint faults into account,a novel Input and Output Parallel Clos network,referred to as the(p_1,p_2)-IOPClos,is proposed to tolerate both cross-point and SE faults.In the(p_1,p_2)-IOPClos,there are p_1 and p_2 expanded parallel switching planes in the input and output stages,respectively.The multiple input/output switching planes are interconnected through the middle stage to provide multiple paths in each stage by which the network throughput can be increased remarkably.Furthermore,the network reliability of the(p_1,p_2)-IOPClos under the above both kinds of faults is analyzed.The corresponding implementation cost is also presented along with the network size.Both theoretical analysis and numerical results indicate that the(p_1,p_2)-IOPClos outperforms traditional Clos-type networks at reliability,while has less implementation cost than the multi-plane Clos network.展开更多
文摘With the popularization of the Intemet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society, physical space, and cyberspace, the information environment related to the current development of artificial intelligence (AI) has profoundly changed. AI faces important adjustments, and scientific foundations are confronted with new breakthroughs, as AI enters a new stage: AI 2.0. This paper briefly reviews the 60-year developmental history of AI, analyzes the external environment promoting the formation of AI 2.0 along with changes in goals, and describes both the beginning of the technology and the core idea behind AI 2.0 development. Furthermore, based on combined social demands and the information environment that exists in relation to Chinese development, suggestions on the develoDment of Al 2.0 are given.
基金supported by the National Natural Science Foundation of China(91338108,91438206)
文摘The harsh space radiation environment compromises the reliability of an on-board switching fabric by leading to cross-point and switching element(SE)faults.Different from traditional faulttolerant switching fabrics only taking crosspoint faults into account,a novel Input and Output Parallel Clos network,referred to as the(p_1,p_2)-IOPClos,is proposed to tolerate both cross-point and SE faults.In the(p_1,p_2)-IOPClos,there are p_1 and p_2 expanded parallel switching planes in the input and output stages,respectively.The multiple input/output switching planes are interconnected through the middle stage to provide multiple paths in each stage by which the network throughput can be increased remarkably.Furthermore,the network reliability of the(p_1,p_2)-IOPClos under the above both kinds of faults is analyzed.The corresponding implementation cost is also presented along with the network size.Both theoretical analysis and numerical results indicate that the(p_1,p_2)-IOPClos outperforms traditional Clos-type networks at reliability,while has less implementation cost than the multi-plane Clos network.