This paper investigates the medium access control (MAC) stratifies for communication systems. Since the signals are naturally superposed in public medium, we introduce physical layer network coding into MAC system a...This paper investigates the medium access control (MAC) stratifies for communication systems. Since the signals are naturally superposed in public medium, we introduce physical layer network coding into MAC system and propose the physical layer network coded MAC (PNC-MAC) to utilize the collisions occurring in the MAC process. The implicit expressions of the throughput and average delay of the system operated with the new algorithm are derived in an iterative way. To show the performance of the algorithm, we compare the throughput and average delay induced by the new algorithm with current schemes via simulations. The results show that when operated with our proposed PNC-MAC, MAC system can achieve a larger throughput while the frames bear shorter average delay. Moreover, in many users case, the throughput increases slightly while the average delay ascends drastically.展开更多
A novel backoff algorithm in CSMA/CA-based medium access control (MAC) protocols for clustered sensor networks was proposed. The algorithm requires that all sensor nodes have the same value of contention window (CW) i...A novel backoff algorithm in CSMA/CA-based medium access control (MAC) protocols for clustered sensor networks was proposed. The algorithm requires that all sensor nodes have the same value of contention window (CW) in a cluster, which is revealed by formulating resource allocation as a network utility maximization problem. Then, by maximizing the total network utility with constrains of minimizing collision probability, the optimal value of CW (Wopt) can be computed according to the number of sensor nodes. The new backoff algorithm uses the common optimal value Wopt and leads to fewer collisions than binary exponential backoff algorithm. The simulation results show that the proposed algorithm outperforms standard 802.11 DCF and S-MAC in average collision times, packet delay, total energy consumption, and system throughput.展开更多
文摘This paper investigates the medium access control (MAC) stratifies for communication systems. Since the signals are naturally superposed in public medium, we introduce physical layer network coding into MAC system and propose the physical layer network coded MAC (PNC-MAC) to utilize the collisions occurring in the MAC process. The implicit expressions of the throughput and average delay of the system operated with the new algorithm are derived in an iterative way. To show the performance of the algorithm, we compare the throughput and average delay induced by the new algorithm with current schemes via simulations. The results show that when operated with our proposed PNC-MAC, MAC system can achieve a larger throughput while the frames bear shorter average delay. Moreover, in many users case, the throughput increases slightly while the average delay ascends drastically.
基金Project(60772088) supported by the National Natural Science Foundation of China
文摘A novel backoff algorithm in CSMA/CA-based medium access control (MAC) protocols for clustered sensor networks was proposed. The algorithm requires that all sensor nodes have the same value of contention window (CW) in a cluster, which is revealed by formulating resource allocation as a network utility maximization problem. Then, by maximizing the total network utility with constrains of minimizing collision probability, the optimal value of CW (Wopt) can be computed according to the number of sensor nodes. The new backoff algorithm uses the common optimal value Wopt and leads to fewer collisions than binary exponential backoff algorithm. The simulation results show that the proposed algorithm outperforms standard 802.11 DCF and S-MAC in average collision times, packet delay, total energy consumption, and system throughput.