期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
沈阳中山路历史文化街区街道空间形态参数量化分析 被引量:7
1
作者 吕海平 张和成 刘忠刚 《沈阳建筑大学学报(社会科学版)》 2017年第5期446-451,共6页
沈阳市中山路是辽宁省首批申报的省级历史文化街区之一,中山路历史文化街区空间形态独具特色,是沈阳历史文化名城的重要组成部分。采取定量研究方法,运用界面密度、宽高比和网络线密度3个参数,对中山路历史文化街区街道空间形态进行全... 沈阳市中山路是辽宁省首批申报的省级历史文化街区之一,中山路历史文化街区空间形态独具特色,是沈阳历史文化名城的重要组成部分。采取定量研究方法,运用界面密度、宽高比和网络线密度3个参数,对中山路历史文化街区街道空间形态进行全面分析,评价中山路街道空间的现状特征,发现历史街区更新发展中所存在的问题,综合、客观地剖析弊病产生的原因,为科学准确地评估街区现状提供基础数据。 展开更多
关键词 历史文化街区 街道空间形态参数 界面密度 宽高比 网络线密度
下载PDF
A new solution to wireless sensor network density control problem
2
作者 石坚 《Journal of Chongqing University》 CAS 2006年第3期143-151,共9页
In this paper, we proposed a scheme based on Monte Carlo algorithm to test whether or not the nodes are redundant for realizing the node density control in the sensor network. The computational complexity is only O(n)... In this paper, we proposed a scheme based on Monte Carlo algorithm to test whether or not the nodes are redundant for realizing the node density control in the sensor network. The computational complexity is only O(n). We also established the coverage collision detection and back-off mechanism applied in the wireless sensor network. The simulation results show that the system can cover all the interested area with the smallest number of nodes and a coverage void will not appear during the course of state-transition. The coverage collision detection and back-off mechanism proposed in this article can be applied when the nodes have either synchronous or asynchronous mechanism. It also provides a stable stage with the length of the time that can be adjusted. 展开更多
关键词 wireless sensor networks density control Mento Carlo alogrithm coverage collision
下载PDF
Prediction Method for Network Traffic Based on Maximum Correntropy Criterion 被引量:4
3
作者 曲桦 马文涛 +1 位作者 赵季红 王涛 《China Communications》 SCIE CSCD 2013年第1期134-145,共12页
This paper proposes a method for improving the precision of Network Traffic Prediction based on the Maximum Correntropy Criterion(NTPMCC),where the nonlinear characteristics of network traffic are considered.This meth... This paper proposes a method for improving the precision of Network Traffic Prediction based on the Maximum Correntropy Criterion(NTPMCC),where the nonlinear characteristics of network traffic are considered.This method utilizes the MCC as a new error evaluation criterion or named the cost function(CF)to train neural networks(NN).MCC is based on a new similarity function(Generalized correlation entropy function,Correntropy),which has as its foundation the Parzen window evaluation and Renyi entropy of error probability density function.At the same time,by combining the MCC with the Mean Square Error(MSE),a mixed evaluation criterion with MCC and MSE is proposed as a cost function of NN training.According to the traffic network characteristics including the nonlinear,non-Gaussian,and mutation,the Elman neural network is trained by MCC and MCC-MSE,and then the trained neural network is used as the model for predicting network traffic.The simulation results based on the evaluation by Mean Absolute Error(MAE),MSE,and Sum Squared Error(SSE)show that the accuracy of the prediction based on MCC is superior to the results of the Elman neural network with MSE.The overall performance is improved by about 0.0131. 展开更多
关键词 MCC MSE Elman neural net-work network traffic prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部