Water-using operations in the process industry have demands for water usually both on water quality and temperature, and the existing mathematical models of heat exchange networks cannot guarantee the energy performan...Water-using operations in the process industry have demands for water usually both on water quality and temperature, and the existing mathematical models of heat exchange networks cannot guarantee the energy performance of a water network optimal. In this paper, the effects of non-isothermal merging on energy performance of water allocation networks are analyzed, which include utility consumption, total heat exchange load, and number of heat exchange matches. Three principles are proposed to express the effects of non-isothermal merging on energy performance of water allocation networks. A rule of non-isothermal merging without increasing utility consumption is deduced. And an approach to improve energy performance of water allocation network is presented. A case study is given to demonstrate the method.展开更多
Cooperative relaying is a promising technology that can improve the spectral and energy efficiency of cellular networks. However, the deployed relays consume a lot of energy and system resources. To improve the energy...Cooperative relaying is a promising technology that can improve the spectral and energy efficiency of cellular networks. However, the deployed relays consume a lot of energy and system resources. To improve the energy efficiency of the relay-assisted cellular networks, this paper considers the use of energy harvesting(EH) on relay nodes. A random sleeping strategy is also introduced in macro base stations(MBS) as a possible method to reduce energy consumption. In this paper, an analytical model is proposed to investigate the energy efficiency of cellular networks with EH relays and sleep mode strategy. Numerical results confirm a significant energy efficiency gain of the proposed networks comparing to the cellular networks with non-EH relays and MBSs without sleep mode strategy. The effects of the density and transmit power of MBSs on energy efficiency are also given through simulations.展开更多
The neighbor knowledge in mobile ad hoc networks is important information. However, the accuracy of neighbor knowledge is paid in terms of energy consumption. In traditional schemes for neighbor discovery, a mobile no...The neighbor knowledge in mobile ad hoc networks is important information. However, the accuracy of neighbor knowledge is paid in terms of energy consumption. In traditional schemes for neighbor discovery, a mobile node uses fixed period to send HELLO messages to notify its existence. An adaptive scheme was proposed. The objective is that when mobile nodes are distributed sparsely or move slowly, fewer HELLO messages are needed to achieve reasonable accuracy, while in a mutable network where nodes are dense or move quickly, they can adaptively send more HELLO messages to ensure the accuracy. Simulation results show that the adaptive scheme achieves the objective and performs effectively.展开更多
As feature sizes shrink,low energy consumption,high reliability and high performance become key objectives of network-on-chip(NoC) design.In this paper,an integrated approach is presented to map IP cores onto NoC arch...As feature sizes shrink,low energy consumption,high reliability and high performance become key objectives of network-on-chip(NoC) design.In this paper,an integrated approach is presented to map IP cores onto NoC architecture and assign voltage levels for each link,such that the communication energy is minimized under constraints of bandwidth and reliability.The design space is explored using tabu search.In order to select optimal voltage level for the links,an energy-efficiency driven heuristic algorithm is proposed to perform energy/reliability trade-off by exploiting communication slack.Experimental results show that the ordinary energy optimization techniques ignoring the influence of voltage on fault rates could lead to drastically decreased communication reliability of NoCs,and the proposed approach can produce reliable and energy-efficient implementations.展开更多
Greening Internet is an important issue now, which studies the way to reduce the increas- ing energy expenditure. Our work focuses on the network infrastructure and considers its energy awareness in traffic routing. W...Greening Internet is an important issue now, which studies the way to reduce the increas- ing energy expenditure. Our work focuses on the network infrastructure and considers its energy awareness in traffic routing. We formulate the model by traffic engineering to achieve link rate a- daption, and also predict traffic matrices to pre- serve network stability. However, we realize that there is a tradeoff between network performance and energy efficiency, which is an obvious issue as Internet grows larger and larger. An essential cause is the huge traffic, and thus we try to fred its so- lution from a novel architecture called Named Data Networking (NDN) which tent in edge routers and can flexibly cache con- decrease the backbone traffic. We combine our methods with NDN, and finally improve both the network performance and the energy efficiency. Our work shows that it is effective, necessary and feasible to consider green- ing idea in the design of future Internet.展开更多
This paper proposes a new Energyefficient Survivable Routing Protocol(ESRP)based on solar energy and wind mixed for power supply in green wireless mesh networks(WMNs).The ESRP combines hop penalty strategy and floodin...This paper proposes a new Energyefficient Survivable Routing Protocol(ESRP)based on solar energy and wind mixed for power supply in green wireless mesh networks(WMNs).The ESRP combines hop penalty strategy and flooding delaying strategy to improve the performances of traditional routing protocol.This paper uses QualNet to simulate and verify the performances of proposed ESRP.Compared with the traditional routing protocol,the simulation results show that the energy utilization of ESRP is more efficient by 13%.At the same time,ESRP is more load-balanced to postpone the appearance of the first energy depletion node and reduce the number of energy depletion nodes,and thus it effectively improves network survivability.展开更多
In N-policy, the nodes attempt to seize the channel when the number of packets in the buffer approaches N. The performance of N-policy on the energy efficiency is widely studied in the past years. And it is presented ...In N-policy, the nodes attempt to seize the channel when the number of packets in the buffer approaches N. The performance of N-policy on the energy efficiency is widely studied in the past years. And it is presented that there exists one optimal N to minimize the energy consumption. However, it is noticed that the delay raised by N-policy receives little attention. This work mathematically proves the delay to monotonically increase with increasing N in the collision-unfree channel. For planar network where the near-to-sink nodes burden heavier traffic than the external ones, the data stemming from the latter undergo longer delay.The various-N algorithm is proposed to address this phenomenon by decreasing the threshold N of outer nodes. Without the impacting on the network longevity, the maximum delay among the network has decreased 62.9% by the algorithm. Extensive simulations are given to verify the effectiveness and correctness of our analysis.展开更多
Efficient spectrum resource allocation in wireless heterogeneous networks is important for improving the system throughput and guaranteeing the user's Quality-of-Service(QoS).In this paper,we propose an enhanced a...Efficient spectrum resource allocation in wireless heterogeneous networks is important for improving the system throughput and guaranteeing the user's Quality-of-Service(QoS).In this paper,we propose an enhanced algorithm for spectrum resource allocation in heterogeneous networks.First,the bandwidth of each user is determined by the user's rate demand and the channel state.Second,graph theory is enhanced and used to improve the spectrum efficiency.Third,spectrum resource is dynamically split between macrocell and femtocells with the changes of users' conditions.Our simulation results show that the proposed algorithm improves the system throughput significantly and also guarantees the fairness for the users.展开更多
The coexistence of wireless body sensor networks(WBSNs) is a very challenging problem, due to strong interference, which seriously affects energy consumption and spectral reuse. The energy efficiency and spectral effi...The coexistence of wireless body sensor networks(WBSNs) is a very challenging problem, due to strong interference, which seriously affects energy consumption and spectral reuse. The energy efficiency and spectral efficiency are two key performance evaluation metrics for wireless communication networks. In this paper, the fundamental tradeoff between energy efficiency and area spectral efficiency of WBSNs is first investigated under the Poisson point process(PPP) model and Matern hard-core point process(HCPP) model using stochastic geometry. The circuit power consumption is taken into consideration in energy efficiency calculation. The tradeoff judgement coefficient is developed and is shown to serve as a promising complementary measure. In addition, this paper proposes a new nearest neighbour distance power control strategy to improve energy efficiency. We show that there exists an optimal transmit power highly dependant on the density of WBSNs and the nearest neighbour distance. Some important properties are also addressed in the analysis of coexisting WBSNs based on the IEEE 802.15.4 standard, such as the impact of intensity nodes distribution,optimal guard zone, and outage probability. Simulation results show that the proposed power control design can reduce the outage probability and enhance energy efficiency. Energy efficiency and area spectral efficiency of the HCPP model are better than those of the PPP model. In addition, the optimal density of WBSNs coexistence is obtained.展开更多
基金Supported by the National Natural Science Foundation of China (20436040).
文摘Water-using operations in the process industry have demands for water usually both on water quality and temperature, and the existing mathematical models of heat exchange networks cannot guarantee the energy performance of a water network optimal. In this paper, the effects of non-isothermal merging on energy performance of water allocation networks are analyzed, which include utility consumption, total heat exchange load, and number of heat exchange matches. Three principles are proposed to express the effects of non-isothermal merging on energy performance of water allocation networks. A rule of non-isothermal merging without increasing utility consumption is deduced. And an approach to improve energy performance of water allocation network is presented. A case study is given to demonstrate the method.
基金supported by National Basic Research Program of China ( No.2012CB316002 )China’s 863 Project (No.2014AA01A703)+2 种基金National Major Project (No.2014ZX03003002-002)Program for New Century Excellent Talents in University (NCET-13-0321)Tsinghua University Initiative Scientific Research Program (No.2011THZ02-2.)
文摘Cooperative relaying is a promising technology that can improve the spectral and energy efficiency of cellular networks. However, the deployed relays consume a lot of energy and system resources. To improve the energy efficiency of the relay-assisted cellular networks, this paper considers the use of energy harvesting(EH) on relay nodes. A random sleeping strategy is also introduced in macro base stations(MBS) as a possible method to reduce energy consumption. In this paper, an analytical model is proposed to investigate the energy efficiency of cellular networks with EH relays and sleep mode strategy. Numerical results confirm a significant energy efficiency gain of the proposed networks comparing to the cellular networks with non-EH relays and MBSs without sleep mode strategy. The effects of the density and transmit power of MBSs on energy efficiency are also given through simulations.
基金The National Natural Science Foundation ofChina (No 60575036)The National BasicResearch Program (973) of China (No2002cb312200)
文摘The neighbor knowledge in mobile ad hoc networks is important information. However, the accuracy of neighbor knowledge is paid in terms of energy consumption. In traditional schemes for neighbor discovery, a mobile node uses fixed period to send HELLO messages to notify its existence. An adaptive scheme was proposed. The objective is that when mobile nodes are distributed sparsely or move slowly, fewer HELLO messages are needed to achieve reasonable accuracy, while in a mutable network where nodes are dense or move quickly, they can adaptively send more HELLO messages to ensure the accuracy. Simulation results show that the adaptive scheme achieves the objective and performs effectively.
基金Supported by the Natural Science Foundation of China(No.61003032,61100118)Artificial Intelligence Key Laboratory of Sichuan Province of China(No.2010RY010,2011RYJ05)
文摘As feature sizes shrink,low energy consumption,high reliability and high performance become key objectives of network-on-chip(NoC) design.In this paper,an integrated approach is presented to map IP cores onto NoC architecture and assign voltage levels for each link,such that the communication energy is minimized under constraints of bandwidth and reliability.The design space is explored using tabu search.In order to select optimal voltage level for the links,an energy-efficiency driven heuristic algorithm is proposed to perform energy/reliability trade-off by exploiting communication slack.Experimental results show that the ordinary energy optimization techniques ignoring the influence of voltage on fault rates could lead to drastically decreased communication reliability of NoCs,and the proposed approach can produce reliable and energy-efficient implementations.
基金This work was supported by the National Key Basic Re- search Program of China under Grant No. 2011 CB302702 the National Natural Science Foundation of China under Grants No. 61132001, No. 61120106008, No. 61070187, No. 60970133, No. 61003225 the Beijing Nova Program.
文摘Greening Internet is an important issue now, which studies the way to reduce the increas- ing energy expenditure. Our work focuses on the network infrastructure and considers its energy awareness in traffic routing. We formulate the model by traffic engineering to achieve link rate a- daption, and also predict traffic matrices to pre- serve network stability. However, we realize that there is a tradeoff between network performance and energy efficiency, which is an obvious issue as Internet grows larger and larger. An essential cause is the huge traffic, and thus we try to fred its so- lution from a novel architecture called Named Data Networking (NDN) which tent in edge routers and can flexibly cache con- decrease the backbone traffic. We combine our methods with NDN, and finally improve both the network performance and the energy efficiency. Our work shows that it is effective, necessary and feasible to consider green- ing idea in the design of future Internet.
基金This work was supported in part by the National Natural Science Foundation of China (61172051, 61071124), the Fok Ying Tung Education Foundation (121065), the Program for New Century Excellent Talents in University (11-0075), the Fundamental Research Funds for the Central Universities (N110204001, N110604008), and the Specialized Research Fund for the Doctoral Program of Higher Education (20110042110023, 20110042120035).
文摘This paper proposes a new Energyefficient Survivable Routing Protocol(ESRP)based on solar energy and wind mixed for power supply in green wireless mesh networks(WMNs).The ESRP combines hop penalty strategy and flooding delaying strategy to improve the performances of traditional routing protocol.This paper uses QualNet to simulate and verify the performances of proposed ESRP.Compared with the traditional routing protocol,the simulation results show that the energy utilization of ESRP is more efficient by 13%.At the same time,ESRP is more load-balanced to postpone the appearance of the first energy depletion node and reduce the number of energy depletion nodes,and thus it effectively improves network survivability.
基金Projects(61379110,61379057,61073186)supported by the National Natural Science Foundation of ChinaProject(2013zzts043)supported by the Fundamental Research Funds for the Central Universities,China
文摘In N-policy, the nodes attempt to seize the channel when the number of packets in the buffer approaches N. The performance of N-policy on the energy efficiency is widely studied in the past years. And it is presented that there exists one optimal N to minimize the energy consumption. However, it is noticed that the delay raised by N-policy receives little attention. This work mathematically proves the delay to monotonically increase with increasing N in the collision-unfree channel. For planar network where the near-to-sink nodes burden heavier traffic than the external ones, the data stemming from the latter undergo longer delay.The various-N algorithm is proposed to address this phenomenon by decreasing the threshold N of outer nodes. Without the impacting on the network longevity, the maximum delay among the network has decreased 62.9% by the algorithm. Extensive simulations are given to verify the effectiveness and correctness of our analysis.
基金supported in part by National Natural Science Foundation(61231008)Natural Science Foundation of Shannxi Province(2015JQ6248)+1 种基金National S&T Major Project(2012ZX03003005-005)the 111 Project (B08038)
文摘Efficient spectrum resource allocation in wireless heterogeneous networks is important for improving the system throughput and guaranteeing the user's Quality-of-Service(QoS).In this paper,we propose an enhanced algorithm for spectrum resource allocation in heterogeneous networks.First,the bandwidth of each user is determined by the user's rate demand and the channel state.Second,graph theory is enhanced and used to improve the spectrum efficiency.Third,spectrum resource is dynamically split between macrocell and femtocells with the changes of users' conditions.Our simulation results show that the proposed algorithm improves the system throughput significantly and also guarantees the fairness for the users.
基金supported by EPSRC TOUCAN Project (Grant No. EP/L020009/1)EU FP7 QUICK Project (Grant No. PIRSES-GA-2013-612652)+3 种基金EU H2020 ITN 5G Wireless Project (Grant No. 641985)National Natural Science Foundation of China (Grant Nos. 61210002, 61401256)MOST 863 Project in 5G (Grant No. 2014AA01A701)International S&T Cooperation Program of China (Grant No. 2014DFA11640)
文摘The coexistence of wireless body sensor networks(WBSNs) is a very challenging problem, due to strong interference, which seriously affects energy consumption and spectral reuse. The energy efficiency and spectral efficiency are two key performance evaluation metrics for wireless communication networks. In this paper, the fundamental tradeoff between energy efficiency and area spectral efficiency of WBSNs is first investigated under the Poisson point process(PPP) model and Matern hard-core point process(HCPP) model using stochastic geometry. The circuit power consumption is taken into consideration in energy efficiency calculation. The tradeoff judgement coefficient is developed and is shown to serve as a promising complementary measure. In addition, this paper proposes a new nearest neighbour distance power control strategy to improve energy efficiency. We show that there exists an optimal transmit power highly dependant on the density of WBSNs and the nearest neighbour distance. Some important properties are also addressed in the analysis of coexisting WBSNs based on the IEEE 802.15.4 standard, such as the impact of intensity nodes distribution,optimal guard zone, and outage probability. Simulation results show that the proposed power control design can reduce the outage probability and enhance energy efficiency. Energy efficiency and area spectral efficiency of the HCPP model are better than those of the PPP model. In addition, the optimal density of WBSNs coexistence is obtained.