From the view of practical application, this paper designs an infrared information collection nodes, the coordinator node, wireless transmission system using CC2430 microcontroller, and in detail design the infrared s...From the view of practical application, this paper designs an infrared information collection nodes, the coordinator node, wireless transmission system using CC2430 microcontroller, and in detail design the infrared sensor (temperature, heart rate, ECG / pulse) circuit diagram. This paper set up a wireless network (ZigBee protocol), sensor signal acquisition, wireless transmitting and receiving, serial communication software design of coordinator node and PC machine. Finally, we on-line debug each module of the system hardware and software. Experiments show that the network node data transmission accurate, reliable work, has basically met the design requirements.展开更多
Node positioning is a fundamental problem in applications of wireless sensor networks (WSNs). In this paper, a new range-free algorithm, called spring swarm localization algorithm (SSLA), is proposed for positioning W...Node positioning is a fundamental problem in applications of wireless sensor networks (WSNs). In this paper, a new range-free algorithm, called spring swarm localization algorithm (SSLA), is proposed for positioning WSNs. To determine the locations of sensor nodes, the proposed algorithm uses network topology information and a small fraction of sensor nodes which know their locations. Numerical simulations show that high positioning accuracy can be obtained by using the algorithm. Some examples are given to illustrate the effectiveness of the algorithm.展开更多
Google Page Rank is a prevalent algorithm for ranking the significance of nodes or websites in a network,and a recent quantum counterpart for Page Rank algorithm has been raised to suggest a higher accuracy of ranking...Google Page Rank is a prevalent algorithm for ranking the significance of nodes or websites in a network,and a recent quantum counterpart for Page Rank algorithm has been raised to suggest a higher accuracy of ranking comparing to Google Page Rank.The quantum Page Rank algorithm is essentially based on quantum stochastic walks and can be expressed using Lindblad master equation,which,however,needs to solve the Kronecker products of an O(N^(4))dimension and requires severely large memory and time when the number of nodes N in a network increases above 150.Here,we present an efficient solver for quantum Page Rank by using the Runge-Kutta method to reduce the matrix dimension to O(N^(2))and employing Tensor Flow to conduct GPU parallel computing.We demonstrate its performance in solving quantum stochastic walks on Erdos-Rényi graphs using an RTX 2060 GPU.The test on the graph of 6000 nodes requires a memory of 5.5 GB and time of 223 s,and that on the graph of 1000 nodes requires 226 MB and 3.6 s.Compared with QSWalk,a currently prevalent Mathematica solver,our solver for the same graph of 1000 nodes reduces the required memory and time to only 0.2%and 0.05%.We apply the solver to quantum Page Rank for the USA major airline network with up to 922 nodes,and to quantum stochastic walk on a glued tree of 2186 nodes.This efficient solver for large-scale quantum Page Rank and quantum stochastic walks would greatly facilitate studies of quantum information in real-life applications.展开更多
This paper proposes a multi-layer multi-agent model for the performance evaluation of powersystems,which is different from the existing multi-agent ones.To describe the impact of the structureof the networked power sy...This paper proposes a multi-layer multi-agent model for the performance evaluation of powersystems,which is different from the existing multi-agent ones.To describe the impact of the structureof the networked power system,the proposed model consists of three kinds of agents that form threelayers:control agents such as the generators and associated controllers,information agents to exchangethe information based on the wide area measurement system (WAMS) or transmit control signals tothe power system stabilizers (PSSs),and network-node agents such as the generation nodes and loadnodes connected with transmission lines.An optimal index is presented to evaluate the performance ofdamping controllers to the system's inter-area oscillation with respect to the information-layer topology.Then,the authors show that the inter-area information exchange is more powerful than the exchangewithin a given area to control the inter-area low frequency oscillation based on simulation analysis.展开更多
文摘From the view of practical application, this paper designs an infrared information collection nodes, the coordinator node, wireless transmission system using CC2430 microcontroller, and in detail design the infrared sensor (temperature, heart rate, ECG / pulse) circuit diagram. This paper set up a wireless network (ZigBee protocol), sensor signal acquisition, wireless transmitting and receiving, serial communication software design of coordinator node and PC machine. Finally, we on-line debug each module of the system hardware and software. Experiments show that the network node data transmission accurate, reliable work, has basically met the design requirements.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10832006 and 60872093)
文摘Node positioning is a fundamental problem in applications of wireless sensor networks (WSNs). In this paper, a new range-free algorithm, called spring swarm localization algorithm (SSLA), is proposed for positioning WSNs. To determine the locations of sensor nodes, the proposed algorithm uses network topology information and a small fraction of sensor nodes which know their locations. Numerical simulations show that high positioning accuracy can be obtained by using the algorithm. Some examples are given to illustrate the effectiveness of the algorithm.
基金supported by the National Key R&D Program of China(2019YFA0308700,and 2017YFA0303700)the National Natural Science Foundation of China(61734005,11761141014,11690033)+3 种基金the Science and Technology Commission of Shanghai Municipality(STCSM)(17JC1400403)the Shanghai Municipal Education Commission(SMEC)(2019SHZDZX01,2017-01-07-0002-E00049)supported by the National Natural Science Foundation of China(11904229)China Postdoctoral Science Foundation(2019T120334)。
文摘Google Page Rank is a prevalent algorithm for ranking the significance of nodes or websites in a network,and a recent quantum counterpart for Page Rank algorithm has been raised to suggest a higher accuracy of ranking comparing to Google Page Rank.The quantum Page Rank algorithm is essentially based on quantum stochastic walks and can be expressed using Lindblad master equation,which,however,needs to solve the Kronecker products of an O(N^(4))dimension and requires severely large memory and time when the number of nodes N in a network increases above 150.Here,we present an efficient solver for quantum Page Rank by using the Runge-Kutta method to reduce the matrix dimension to O(N^(2))and employing Tensor Flow to conduct GPU parallel computing.We demonstrate its performance in solving quantum stochastic walks on Erdos-Rényi graphs using an RTX 2060 GPU.The test on the graph of 6000 nodes requires a memory of 5.5 GB and time of 223 s,and that on the graph of 1000 nodes requires 226 MB and 3.6 s.Compared with QSWalk,a currently prevalent Mathematica solver,our solver for the same graph of 1000 nodes reduces the required memory and time to only 0.2%and 0.05%.We apply the solver to quantum Page Rank for the USA major airline network with up to 922 nodes,and to quantum stochastic walk on a glued tree of 2186 nodes.This efficient solver for large-scale quantum Page Rank and quantum stochastic walks would greatly facilitate studies of quantum information in real-life applications.
基金supported in part by the National Natural Science Foundation of China under Grants Nos. 50707035, 50595411, 60425307, 60221301 and 50607005, in part by the 111 project (B08013)Program for Changjiang Scholars and Innovative Research Team in University (IRT0515)in part by the Program for New Century Excellent Talents in University (NCET-05-0216)
文摘This paper proposes a multi-layer multi-agent model for the performance evaluation of powersystems,which is different from the existing multi-agent ones.To describe the impact of the structureof the networked power system,the proposed model consists of three kinds of agents that form threelayers:control agents such as the generators and associated controllers,information agents to exchangethe information based on the wide area measurement system (WAMS) or transmit control signals tothe power system stabilizers (PSSs),and network-node agents such as the generation nodes and loadnodes connected with transmission lines.An optimal index is presented to evaluate the performance ofdamping controllers to the system's inter-area oscillation with respect to the information-layer topology.Then,the authors show that the inter-area information exchange is more powerful than the exchangewithin a given area to control the inter-area low frequency oscillation based on simulation analysis.