In this paper, the Kalman filter is used to predict image feature positionaround which an image-processing window is then established to diminish feature-searching area andto heighten the image-processing speed. Accor...In this paper, the Kalman filter is used to predict image feature positionaround which an image-processing window is then established to diminish feature-searching area andto heighten the image-processing speed. According to the fundamentals of image-based visual servoing(IBVS), the cerebellar model articulation controller (CMAC) neural network is inserted into thevisual servo control loop to implement the nonlinear mapping from the error signal in the imagespace to the control signal in the input space instead of the iterative adjustment and complicatedinverse solution of the image Jacobian. Simulation results show that the feature point can bepredicted efficiently using the Kalman filter and on-line supervised learning can be realized usingCMAC neural network; end-effector can track the target object very well.展开更多
According to the characteristics of dynamic firing in pulse coupled neural network (PCNN) and regional configuration in retinal blood vessel network, a new method combined with simplified PCNN and fast 2D-Otsu algorit...According to the characteristics of dynamic firing in pulse coupled neural network (PCNN) and regional configuration in retinal blood vessel network, a new method combined with simplified PCNN and fast 2D-Otsu algorithm was proposed for automated retinal blood vessels segmentation. Firstly, 2D Gaussian matched filter was used to enhance the retinal images and simplified PCNN was employed to segment the blood vessels by firing neighborhood neurons. Then, fast 2D-Otsu algorithm was introduced to search the best segmentation results and iteration times with less computation time. Finally, the whole vessel network was obtained via analyzing the regional connectivity. Experiments implemented on the public Hoover database indicate that this new method gets a 0.803 5 true positive rate and a 0.028 0 false positive rate on an average. According to the test results, compared with Hoover algorithm and method of PCNN and 1D-Otsu, the proposed method shows much better performance.展开更多
The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing, robotic and biological visions. This paper introduces a kind of CNNs with performance of extracting closed domain...The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing, robotic and biological visions. This paper introduces a kind of CNNs with performance of extracting closed domains in binary images, and gives a general method for designing templates of such a kind of CNNs. One theorem provides parameter inequalities for determining parameter intervals for implementing prescribed image processing functions, respectively. Examples for extracting closed domains in binary scale images are given.展开更多
A new vision-based approach was presented for predicting the behavior of the ball carrier—shooting, passing and dribbling in basketball matches. It was proposed to recognize the ball carrier’s head pose by classifyi...A new vision-based approach was presented for predicting the behavior of the ball carrier—shooting, passing and dribbling in basketball matches. It was proposed to recognize the ball carrier’s head pose by classifying its yaw angle to determine his vision range and the court situation of the sportsman within his vision range can be further learned. In basketball match videos characterized by cluttered background, fast motion of the sportsmen and low resolution of their head images, and the covariance descriptor, were adopted to fuse multiple visual features of the head region, which can be seen as a point on the Riemannian manifold and then mapped to the tangent space. Then, the classification of head yaw angle was directly completed in this space through the trained multiclass LogitBoost. In order to describe the court situation of all sportsmen within the ball carrier’s vision range, artificial potential field (APF)-based information was introduced. Finally, the behavior of the ball carrier—shooting, passing and dribbling, was predicted using radial basis function (RBF) neural network as the classifier. Experimental results show that the average prediction accuracy of the proposed method can reach 80% on the video recorded in basketball matches, which validates its effectiveness.展开更多
In this paper,a method with an eye-in-hand configuration is developed to hit targets during visual tracking for the TLS(Tele-Light Saber) game.It is not necessary to calibrate camera parameters and predict the traject...In this paper,a method with an eye-in-hand configuration is developed to hit targets during visual tracking for the TLS(Tele-Light Saber) game.It is not necessary to calibrate camera parameters and predict the trajectory of the moving object.Firstly,the expression of the image Jacobian matrix for the eye-in-hand configuration is proposed,and then an update law is designed to estimate the image Jacobian online.Furthermore,a control scheme is presented and the Lyapunov method is employed to prove asymptotic convergence of image errors.No assumption for the moving objects is needed.Finally,both simulation and experimental results are shown to support the approach in this paper.展开更多
基金The National Natural Science Foundation of China (59990470).
文摘In this paper, the Kalman filter is used to predict image feature positionaround which an image-processing window is then established to diminish feature-searching area andto heighten the image-processing speed. According to the fundamentals of image-based visual servoing(IBVS), the cerebellar model articulation controller (CMAC) neural network is inserted into thevisual servo control loop to implement the nonlinear mapping from the error signal in the imagespace to the control signal in the input space instead of the iterative adjustment and complicatedinverse solution of the image Jacobian. Simulation results show that the feature point can bepredicted efficiently using the Kalman filter and on-line supervised learning can be realized usingCMAC neural network; end-effector can track the target object very well.
基金Project (60872081) supported by the National Natural Science Foundation of ChinaProject (50051) supported by the Program for New Century Excellent Talents in UniversityProject (4092034) supported by the Natural Science Foundation of Beijing
文摘According to the characteristics of dynamic firing in pulse coupled neural network (PCNN) and regional configuration in retinal blood vessel network, a new method combined with simplified PCNN and fast 2D-Otsu algorithm was proposed for automated retinal blood vessels segmentation. Firstly, 2D Gaussian matched filter was used to enhance the retinal images and simplified PCNN was employed to segment the blood vessels by firing neighborhood neurons. Then, fast 2D-Otsu algorithm was introduced to search the best segmentation results and iteration times with less computation time. Finally, the whole vessel network was obtained via analyzing the regional connectivity. Experiments implemented on the public Hoover database indicate that this new method gets a 0.803 5 true positive rate and a 0.028 0 false positive rate on an average. According to the test results, compared with Hoover algorithm and method of PCNN and 1D-Otsu, the proposed method shows much better performance.
基金The project supported by National Natural Science Foundation of China under Grant No. 70271068, the Foundation for University Key Teachers, and the Research Fund for the Doctoral Program of Higher Education of the Ministry of Education of China under Grant No. 200200080004
文摘The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing, robotic and biological visions. This paper introduces a kind of CNNs with performance of extracting closed domains in binary images, and gives a general method for designing templates of such a kind of CNNs. One theorem provides parameter inequalities for determining parameter intervals for implementing prescribed image processing functions, respectively. Examples for extracting closed domains in binary scale images are given.
基金Project(50808025) supported by the National Natural Science Foundation of ChinaProject(20090162110057) supported by the Doctoral Fund of Ministry of Education, China
文摘A new vision-based approach was presented for predicting the behavior of the ball carrier—shooting, passing and dribbling in basketball matches. It was proposed to recognize the ball carrier’s head pose by classifying its yaw angle to determine his vision range and the court situation of the sportsman within his vision range can be further learned. In basketball match videos characterized by cluttered background, fast motion of the sportsmen and low resolution of their head images, and the covariance descriptor, were adopted to fuse multiple visual features of the head region, which can be seen as a point on the Riemannian manifold and then mapped to the tangent space. Then, the classification of head yaw angle was directly completed in this space through the trained multiclass LogitBoost. In order to describe the court situation of all sportsmen within the ball carrier’s vision range, artificial potential field (APF)-based information was introduced. Finally, the behavior of the ball carrier—shooting, passing and dribbling, was predicted using radial basis function (RBF) neural network as the classifier. Experimental results show that the average prediction accuracy of the proposed method can reach 80% on the video recorded in basketball matches, which validates its effectiveness.
基金Supported by the National Natural Science Foundation of China(No.60905061)the National Natural Science Foundation of Tianjin(No.08JCYBJC12700)
文摘In this paper,a method with an eye-in-hand configuration is developed to hit targets during visual tracking for the TLS(Tele-Light Saber) game.It is not necessary to calibrate camera parameters and predict the trajectory of the moving object.Firstly,the expression of the image Jacobian matrix for the eye-in-hand configuration is proposed,and then an update law is designed to estimate the image Jacobian online.Furthermore,a control scheme is presented and the Lyapunov method is employed to prove asymptotic convergence of image errors.No assumption for the moving objects is needed.Finally,both simulation and experimental results are shown to support the approach in this paper.