期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于网络解卷积和网络沉默算法的高维数据网络优化策略与比较 被引量:3
1
作者 荣志炜 王文杰 李康 《中国卫生统计》 CSCD 北大核心 2019年第1期68-70,74,共4页
目的根据组学数据构建网络存在间接边的问题,对此可通过适当的算法进行优化。本文使用DREAM5平台的网络数据,对网络解卷积方法(ND)和网络沉默(Silencing)两种网络优化算法的效果进行比较,提供合适的网络构建策略。方法分别使用7种方法... 目的根据组学数据构建网络存在间接边的问题,对此可通过适当的算法进行优化。本文使用DREAM5平台的网络数据,对网络解卷积方法(ND)和网络沉默(Silencing)两种网络优化算法的效果进行比较,提供合适的网络构建策略。方法分别使用7种方法构建网络,然后使用ND和Silencing算法对网络优化,再通过ROC-PR曲线的评分对其效果进行比较,最后用网络结构分析方法评价去除间接效应的能力。结果两种方法对大多数网络都有较好的优化能力,能够很好地去除间接效应;相对而言,ND方法略优于Silencing方法。结论使用RF+ND和CLR+Silencing方法构建网络是两种较好的网络构建策略。 展开更多
关键词 基因调控网络 网络优化 网络解卷积 网络沉默
下载PDF
MAAUNet:Exploration of U-shaped encoding and decoding structure for semantic segmentation of medical image 被引量:1
2
作者 SHAO Shuo GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期418-429,共12页
In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggreg... In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggregation U-shaped attention network structure of MAAUNet(MultiRes aggregation attention UNet)is proposed based on MultiResUNet.Firstly,aggregate connection is introduced from the original feature aggregation at the same level.Skip connection is redesigned to aggregate features of different semantic scales at the decoder subnet,and the problem of semantic gaps is further solved that may exist between skip connections.Secondly,after the multi-scale convolution module,a convolution block attention module is added to focus and integrate features in the two attention directions of channel and space to adaptively optimize the intermediate feature map.Finally,the original convolution block is improved.The convolution channels are expanded with a series convolution structure to complement each other and extract richer spatial features.Residual connections are retained and the convolution block is turned into a multi-channel convolution block.The model is made to extract multi-scale spatial features.The experimental results show that MAAUNet has strong competitiveness in challenging datasets,and shows good segmentation performance and stability in dealing with multi-scale input and noise interference. 展开更多
关键词 U-shaped attention network structure of MAAUNet convolutional neural network encoding-decoding structure attention mechanism medical image semantic segmentation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部