A novel methodology is presented for simultaneously optimizing synthesis and cleaning schedule of flexible heat exchanger network(HEN)by genetic/simulated annealing algorithms(GA/SA).Through taking into account the ef...A novel methodology is presented for simultaneously optimizing synthesis and cleaning schedule of flexible heat exchanger network(HEN)by genetic/simulated annealing algorithms(GA/SA).Through taking into account the effect of fouling process on optimal network topology,a preliminary network structure possessing two-fold oversynthesis is obtained by means of pseudo-temperature enthalpy(T-H)diagram approach prior to simultaneous optimization.Thus,the computational complexity of this problem classified as NP(Non-deterministic Polynomial)-complete can be significantly reduced.The promising matches resulting from preliminary synthesis stage are further optimized in parallel with their heat exchange areas and cleaning schedule.In addition,a novel continu- ous time representation is introduced to subdivide the given time horizon into several variable-size intervals according to operating periods of heat exchangers,and then flexible HEN synthesis can be implemented in dynamic manner.A numerical example is provided to demonstrate that the presented strategy is feasible to decrease the total annual cost(TAC)and further improve network flexibility,but even more important,it may be applied to solve large-scale flexible HEN synthesis problems.展开更多
Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they ...Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they will harm the interest of individual users with instable resource requirements. This paper considers the multi-point video surveillance scenarios in a complex network environment with both wired and wireless networks. We introduce the utility estimated by the total costs of an individual network user. The problem is studied through mathematical modeling and we propose an improved problem-specific branch-and-cut algorithm to solve it. The algorithm follows the divide-and-conquer principle and fully considers the duality feature of network selection. The experiment is conducted by simulation through C and Lingo. And it shows that compared with a centralized random allocation scheme and a cost greed allocation scheme, the proposed scheme has better per- formance of reducing the total costs by 13.0% and 30.6% respectively for the user.展开更多
In mine ventilation networks, the reasonable airflow distribution is very important for the production safety and economy. Three basic problems of the natural, full-controlled and semi-controlled splitting were review...In mine ventilation networks, the reasonable airflow distribution is very important for the production safety and economy. Three basic problems of the natural, full-controlled and semi-controlled splitting were reviewed in the paper. Aiming at the high difficulty semi-controlled splitting problem, the general nonlinear multi-objectives optimization mathematical model with constraints was established based on the theory of mine ventilation networks. A new algorithm, which combined the improved differential evaluation and the critical path method (CPM) based on the multivariable separate solution strategy, was put forward to search for the global optimal solution more efficiently. In each step of evolution, the feasible solutions of air quantity distribution are firstly produced by the improved differential evolu- tion algorithm, and then the optimal solutions of regulator pressure drop are obtained by the CPM. Through finite steps iterations, the optimal solution can be given. In this new algorithm, the population of feasible solutions were sorted and grouped for enhancing the global search ability and the individuals in general group were randomly initialized for keeping diversity. Meanwhile, the individual neighbor- hood in the fine group which may be closely to the optimal solutions were searched locally and slightly for achieving a balance between global searching and local searching, thus improving the convergence rate. The computer program was developed based on this method. Finally, the two ventilation networks with single-fan and multi-fans were solved. The results show that this algorithm has advantages of high effectiveness, fast convergence, good robustness and flexibility. This computer program could be used to solve lar^e-scale ~eneralized ventilation networks o^timization problem in the future.展开更多
Due to the effectiveness, simple deployment and low cost, radio frequency identification (RFID) systems are used in a variety of applications to uniquely identify physical objects. The operation of RFID systems ofte...Due to the effectiveness, simple deployment and low cost, radio frequency identification (RFID) systems are used in a variety of applications to uniquely identify physical objects. The operation of RFID systems often involves a situation in which multiple readers physically located near one another may interfere with one another's operation. Such reader collision must be minimized to avoid the faulty or miss reads. Specifically, scheduling the colliding RFID readers to reduce the total system transaction time or response time is the challenging problem for large-scale RFID network deployment. Therefore, the aim of this work is to use a successful multi-swarm cooperative optimizer called pseo to minimize both the reader-to-reader interference and total system transaction time in RFID reader networks. The main idea of pS20 is to extend the single population PSO to the interacting multi-swarm model by constructing hierarchical interaction topology and enhanced dynamical update equations. As the RFID network scheduling model formulated in this work is a discrete problem, a binary version of PS20 algorithm is proposed. With seven discrete benchmark functions, PS20 is proved to have significantly better performance than the original PSO and a binary genetic algorithm, pS20 is then used for solving the real-world RFID network scheduling problem. Numerical results for four test cases with different scales, ranging from 30 to 200 readers, demonstrate the performance of the proposed methodology.展开更多
基金Supported by the National Natural Science Foundation of China (20976022) and Dalian University of Technology for Constructing Interdiscipline 'Energy+X'. ACKNOWLEDGEMENTS The authors gratefully acknowledge financial support from Lanzhou Petrochemical Company, PetroChina Company Limited.
文摘A novel methodology is presented for simultaneously optimizing synthesis and cleaning schedule of flexible heat exchanger network(HEN)by genetic/simulated annealing algorithms(GA/SA).Through taking into account the effect of fouling process on optimal network topology,a preliminary network structure possessing two-fold oversynthesis is obtained by means of pseudo-temperature enthalpy(T-H)diagram approach prior to simultaneous optimization.Thus,the computational complexity of this problem classified as NP(Non-deterministic Polynomial)-complete can be significantly reduced.The promising matches resulting from preliminary synthesis stage are further optimized in parallel with their heat exchange areas and cleaning schedule.In addition,a novel continu- ous time representation is introduced to subdivide the given time horizon into several variable-size intervals according to operating periods of heat exchangers,and then flexible HEN synthesis can be implemented in dynamic manner.A numerical example is provided to demonstrate that the presented strategy is feasible to decrease the total annual cost(TAC)and further improve network flexibility,but even more important,it may be applied to solve large-scale flexible HEN synthesis problems.
基金Supported by the National Science and Technology Major Project (No.2011ZX03005-004-04)the National Grand Fundamental Research 973 Program of China (No.2011CB302-905)+2 种基金the National Natural Science Foundation of China (No.61170058,61272133,and 51274202)the Research Fund for the Doctoral Program of Higher Education of China (No.20103402110041)the Suzhou Fundamental Research Project (No.SYG201143)
文摘Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they will harm the interest of individual users with instable resource requirements. This paper considers the multi-point video surveillance scenarios in a complex network environment with both wired and wireless networks. We introduce the utility estimated by the total costs of an individual network user. The problem is studied through mathematical modeling and we propose an improved problem-specific branch-and-cut algorithm to solve it. The algorithm follows the divide-and-conquer principle and fully considers the duality feature of network selection. The experiment is conducted by simulation through C and Lingo. And it shows that compared with a centralized random allocation scheme and a cost greed allocation scheme, the proposed scheme has better per- formance of reducing the total costs by 13.0% and 30.6% respectively for the user.
基金financially supported by the National Natural Science Foundation of China (No. 51134023)
文摘In mine ventilation networks, the reasonable airflow distribution is very important for the production safety and economy. Three basic problems of the natural, full-controlled and semi-controlled splitting were reviewed in the paper. Aiming at the high difficulty semi-controlled splitting problem, the general nonlinear multi-objectives optimization mathematical model with constraints was established based on the theory of mine ventilation networks. A new algorithm, which combined the improved differential evaluation and the critical path method (CPM) based on the multivariable separate solution strategy, was put forward to search for the global optimal solution more efficiently. In each step of evolution, the feasible solutions of air quantity distribution are firstly produced by the improved differential evolu- tion algorithm, and then the optimal solutions of regulator pressure drop are obtained by the CPM. Through finite steps iterations, the optimal solution can be given. In this new algorithm, the population of feasible solutions were sorted and grouped for enhancing the global search ability and the individuals in general group were randomly initialized for keeping diversity. Meanwhile, the individual neighbor- hood in the fine group which may be closely to the optimal solutions were searched locally and slightly for achieving a balance between global searching and local searching, thus improving the convergence rate. The computer program was developed based on this method. Finally, the two ventilation networks with single-fan and multi-fans were solved. The results show that this algorithm has advantages of high effectiveness, fast convergence, good robustness and flexibility. This computer program could be used to solve lar^e-scale ~eneralized ventilation networks o^timization problem in the future.
基金Projects(61105067,61174164)supported by the National Natural Science Foundation of ChinaProjects(012BAF10B11,2012BAF10B06)supported by the National Key Technologies R&D Program of China+1 种基金Project(F11-264-1-08)supported by the Shenyang Science and Technology Project,ChinaProject(2011BY100383)supported by the Cooperation Project of Foshan and Chinese Academy of Sciences
文摘Due to the effectiveness, simple deployment and low cost, radio frequency identification (RFID) systems are used in a variety of applications to uniquely identify physical objects. The operation of RFID systems often involves a situation in which multiple readers physically located near one another may interfere with one another's operation. Such reader collision must be minimized to avoid the faulty or miss reads. Specifically, scheduling the colliding RFID readers to reduce the total system transaction time or response time is the challenging problem for large-scale RFID network deployment. Therefore, the aim of this work is to use a successful multi-swarm cooperative optimizer called pseo to minimize both the reader-to-reader interference and total system transaction time in RFID reader networks. The main idea of pS20 is to extend the single population PSO to the interacting multi-swarm model by constructing hierarchical interaction topology and enhanced dynamical update equations. As the RFID network scheduling model formulated in this work is a discrete problem, a binary version of PS20 algorithm is proposed. With seven discrete benchmark functions, PS20 is proved to have significantly better performance than the original PSO and a binary genetic algorithm, pS20 is then used for solving the real-world RFID network scheduling problem. Numerical results for four test cases with different scales, ranging from 30 to 200 readers, demonstrate the performance of the proposed methodology.