In modern wireless communication network, the increased consumer demands for multi-type applications and high quality services have become a prominent trend, and put considerable pressure on the wireless network. In t...In modern wireless communication network, the increased consumer demands for multi-type applications and high quality services have become a prominent trend, and put considerable pressure on the wireless network. In that case, the Quality of Experience(Qo E) has received much attention and has become a key performance measurement for the application and service. In order to meet the users' expectations, the management of the resource is crucial in wireless network, especially the Qo E based resource allocation. One of the effective way for resource allocation management is accurate application identification. In this paper, we propose a novel deep learning based method for application identification. We first analyse the requirement of managing Qo E for wireless communication, and review the limitation of the traditional identification methods. After that, a deep learning based method is proposed for automatically extracting the features and identifying the type of application. The proposed method is evaluated by using the practical wireless traffic data, and the experiments verify the effectiveness of our method.展开更多
In this paper, Neural Networks (NNs) are used in the modeling of ship maneuvering motion. A nonlinear response model and a linear hydrodynamic model of ship maneuvering motion are also investigated. The maneuverabil...In this paper, Neural Networks (NNs) are used in the modeling of ship maneuvering motion. A nonlinear response model and a linear hydrodynamic model of ship maneuvering motion are also investigated. The maneuverability indices and linear non-dimensional hydrodynamic derivatives in the models are identified by using two-layer feed forward NNs. The stability of parametric estimation is confirmed. Then, the ship maneuvering motion is predicted based on the obtained models. A comparison between the predicted results and the model test results demonstrates the validity of the proposed modeling method.展开更多
The ripening process of grape is an important stage during grape growth and development. During this process, color of grape skin is the most obvious change. The molecular mechanism for the ripening of grape(a non-cli...The ripening process of grape is an important stage during grape growth and development. During this process, color of grape skin is the most obvious change. The molecular mechanism for the ripening of grape(a non-climacteric fruit, which ripens without ethylene and respiration bursts) is still unclear. Although numerous studies have been done on the changes in the contents of metabolites during grape ripening, the differentially expressed genes at veraison and maturity stages have not been systematically analyzed. In this study, 1 524 genes that are significantly differentially expressed in grape(Pinot Noir) skin at veraison and maturity stages were identified, and a co-expression network of these genes was built. Some of the eight co-expression modules we identified may be closely related to the synthesis or metabolism of anthocyanins, sugar acids, and other flavor substances. The transcription factor families WRKY, b ZIP, HSF and WOX may play an important role in the regulation of anthocyanin synthesis or metabolism. The results provide a foundation for further study of the molecular mechanism of grape ripening.展开更多
Identification of forest fire-points in NOAA images in the basis of monitoring forest fire using NOAA satellite data. Traditional visual interpretation is difficult to settle for auto identification with computer. The...Identification of forest fire-points in NOAA images in the basis of monitoring forest fire using NOAA satellite data. Traditional visual interpretation is difficult to settle for auto identification with computer. The artificial neural network technique provides a new means for solving this problem. In this paper, the principles and method of using neural network technique to automatically identify fire-points in NOAA images are discussed and the test in the range of Hubei province is presented. The result of the test shows that the disciplined neural network has collected the character of fire-points and has ability to identify fire-points in NOAA images. Comparing neural network with visual interpretation, the conclusion is drawn that by using neural network the purpose of auto-identification of forest fire-points in NOAA images can be realized with the almost same precision.展开更多
In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural n...In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural network approach seems to be more accurate. PCA consists in projecting the spectrum of a gas collected from a remote sensing system in, firstly, a three-dimensional space, then in a two-dimensional one using a model of Multi-Layer Perceptron based neural network. It adopts during the learning process, the back propagation algorithm of the gradient, in which the mean square error output is continuously calculated and compared to the input until it reaches a minimal threshold value. This aims to correct the synaptic weights of the network. So, the Artificial Neural Network (ANN) tends to be more efficient in the classification process. This paper emphasizes the contribution of the ANN method in the spectral data processing, classification and identification and in addition, its fast convergence during the back propagation of the gradient.展开更多
Improving customer experience has become a more and more important role in enhancing customer service in fashion retailing business. In this study, a kind of intelligent garment coordination and try-on system for fash...Improving customer experience has become a more and more important role in enhancing customer service in fashion retailing business. In this study, a kind of intelligent garment coordination and try-on system for fashion retailing was proposed. Radio Frequency Identification (RFID) technology was used to identify customer and garment item automatically. The intelligent procedure for garment coordination recommendation using Artificial Neural Network (ANN) was developed to imitate fashion designers' decision-making on garment coordination. Virtual try-on algorithm based on the customer's 2D/mago was accomplished using imagewarping technique. The system architecture and the software framework were also described. The results show that the 'system is a practical and useful application for fashion retailers.展开更多
An intrusion of contaminants into the water distribution network (WDN) can occur through storage tanks (via animals, dust-carrying bacteria, and infiltration) and pipes. A sensor network could yield useful observation...An intrusion of contaminants into the water distribution network (WDN) can occur through storage tanks (via animals, dust-carrying bacteria, and infiltration) and pipes. A sensor network could yield useful observations that help identify the location of the source, the strength, the time of occurrence, and the duration of contamination. This paper proposes a methodology for identifying the contamination sources in a water distribution system, which identifies the key characteristics of contamination, such as location, starting time, and injection rates at different time intervals. Based on simplified hypotheses and associated with a high computational efficiency, the methodology is designed to be a simple and easy-to-use tool for water companies to ensure rapid identification of the contamination sources, The proposed methodology identifies the characteristics of pollution sources by matching the dynamic patterns of the simulated and measured concentrations. The application of this methodology to a literature network and a real WDN are illustrated with the aid of an example. The results showed that if contaminants are transported from the sources to the sensors at intervals, then this method can identify the most possible ones from candidate pollution sources. However, if the contamination data is minimal, a greater number of redundant contamination source nodes will be present. Consequently, more data from different sensors obtained through network monitoring are required to effectively use this method for locating multi-sources of contamination in the WDN.展开更多
The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while...The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while ignoring the structural diversity of different sub-networks. In this paper, we evaluate the robustness of the global cargo ship transportation network based on the most recent Automatic Identification System(AIS) data available. First, we subdivide three typical cargo ship transportation networks(i.e., oil tanker, container ship and bulk carrier) from the original cargo ship transportation network. Then, we design statistical indices based on complex network theory and employ four attack strategies, including random attack and three intentional attacks(i.e., degree-based attack, betweenness-based attack and flux-based attack) to evaluate the robustness of the three typical cargo ship transportation networks. Finally, we compare the integrity of the remaining ports of the network when a small proportion of ports lose their function. The results show that 1) compared with the holistic cargo ship transportation network, the fine-grain-based cargo ship transportation networks can fully reflect the pattern and process of global cargo transportation; 2) different cargo ship networks behave heterogeneously in terms of their robustness, with the container network being the weakest and the bulk carrier network being the strongest; and 3) small-scale intentional attacks may have significant influence on the integrity of the container network but a minor impact on the bulk carrier and oil tanker transportation networks. These conclusions can help improve the decision support capabilities in maritime transportation planning and emergency response and facilitate the establishment of a more reliable maritime transportation system.Abstract: The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while ignoring the structural diversity of different sub-networks. In this paper, we evaluate the robustness of the global cargo ship transporta- tion network based on the most recent Automatic Identification System (AIS) data available. First, we subdivide three typical cargo ship transportation networks (i.e., oil tanker, container ship and bulk carrier) from the original cargo ship transportation network. Then, we design statistical indices based on complex network theory and employ four attack strategies, in- cluding random attack and three intentional attacks (i.e., degree-based attack, between- ness-based attack and flux-based attack) to evaluate the robustness of the three typical cargo ship transportation networks. Finally, we compare the integrity of the remaining ports of the network when a small proportion of ports lose their function. The results show that 1) com- pared with the holistic cargo ship transportation network, the fine-grain-based cargo ship transportation networks can fully reflect the pattern and process of global cargo transportation 2) different cargo ship networks behave heterogeneously in terms of their robustness, with the container network being the weakest and the bulk carrier network being the strongest; and 3) small-scale intentional attacks may have significant influence on the integrity of the con- tainer network but a minor impact on the bulk carrier and oil tanker transportation networks.These conclusions can help improve the decision support capabilities in maritime transportation planning and emergency response and facilitate the establishment of a more reliable maritime transportation system.展开更多
基金supported by NSAF under Grant(No.U1530117)National Natural Science Foundation of China(No.61471022 and No.61201156)
文摘In modern wireless communication network, the increased consumer demands for multi-type applications and high quality services have become a prominent trend, and put considerable pressure on the wireless network. In that case, the Quality of Experience(Qo E) has received much attention and has become a key performance measurement for the application and service. In order to meet the users' expectations, the management of the resource is crucial in wireless network, especially the Qo E based resource allocation. One of the effective way for resource allocation management is accurate application identification. In this paper, we propose a novel deep learning based method for application identification. We first analyse the requirement of managing Qo E for wireless communication, and review the limitation of the traditional identification methods. After that, a deep learning based method is proposed for automatically extracting the features and identifying the type of application. The proposed method is evaluated by using the practical wireless traffic data, and the experiments verify the effectiveness of our method.
基金Partially Supported by the Special Item for the Fujian Provincial Department of Ocean and Fisheries(No.MHGX-16)the Special Item for Universities in Fujian Province by the Education Department(No.JK15003)
文摘In this paper, Neural Networks (NNs) are used in the modeling of ship maneuvering motion. A nonlinear response model and a linear hydrodynamic model of ship maneuvering motion are also investigated. The maneuverability indices and linear non-dimensional hydrodynamic derivatives in the models are identified by using two-layer feed forward NNs. The stability of parametric estimation is confirmed. Then, the ship maneuvering motion is predicted based on the obtained models. A comparison between the predicted results and the model test results demonstrates the validity of the proposed modeling method.
基金Supported by Major Agricultural Application Technology Innovation Project of Shandong Province"Development of Landmark Wines and Integrated Application of Key Technologies in Shandong Province"Major Agricultural Application Technology Innovation Project of Shandong Province"Research and Application of Precision Control of Maturation and Product Innovation of Featured Brewing Grape"Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2016D01)
文摘The ripening process of grape is an important stage during grape growth and development. During this process, color of grape skin is the most obvious change. The molecular mechanism for the ripening of grape(a non-climacteric fruit, which ripens without ethylene and respiration bursts) is still unclear. Although numerous studies have been done on the changes in the contents of metabolites during grape ripening, the differentially expressed genes at veraison and maturity stages have not been systematically analyzed. In this study, 1 524 genes that are significantly differentially expressed in grape(Pinot Noir) skin at veraison and maturity stages were identified, and a co-expression network of these genes was built. Some of the eight co-expression modules we identified may be closely related to the synthesis or metabolism of anthocyanins, sugar acids, and other flavor substances. The transcription factor families WRKY, b ZIP, HSF and WOX may play an important role in the regulation of anthocyanin synthesis or metabolism. The results provide a foundation for further study of the molecular mechanism of grape ripening.
文摘Identification of forest fire-points in NOAA images in the basis of monitoring forest fire using NOAA satellite data. Traditional visual interpretation is difficult to settle for auto identification with computer. The artificial neural network technique provides a new means for solving this problem. In this paper, the principles and method of using neural network technique to automatically identify fire-points in NOAA images are discussed and the test in the range of Hubei province is presented. The result of the test shows that the disciplined neural network has collected the character of fire-points and has ability to identify fire-points in NOAA images. Comparing neural network with visual interpretation, the conclusion is drawn that by using neural network the purpose of auto-identification of forest fire-points in NOAA images can be realized with the almost same precision.
文摘In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural network approach seems to be more accurate. PCA consists in projecting the spectrum of a gas collected from a remote sensing system in, firstly, a three-dimensional space, then in a two-dimensional one using a model of Multi-Layer Perceptron based neural network. It adopts during the learning process, the back propagation algorithm of the gradient, in which the mean square error output is continuously calculated and compared to the input until it reaches a minimal threshold value. This aims to correct the synaptic weights of the network. So, the Artificial Neural Network (ANN) tends to be more efficient in the classification process. This paper emphasizes the contribution of the ANN method in the spectral data processing, classification and identification and in addition, its fast convergence during the back propagation of the gradient.
基金National Nature Science Foundations of China (No.60975059, No.60775052)Specialized Research Fund for the Doctoral Program of Higher Education from Ministry of Education of China (No.20090075110002)Projects of Shanghai Committee of Science and Technology, China (No.09JC1400900, No.08JC1400100, No.10DZ0506500)
文摘Improving customer experience has become a more and more important role in enhancing customer service in fashion retailing business. In this study, a kind of intelligent garment coordination and try-on system for fashion retailing was proposed. Radio Frequency Identification (RFID) technology was used to identify customer and garment item automatically. The intelligent procedure for garment coordination recommendation using Artificial Neural Network (ANN) was developed to imitate fashion designers' decision-making on garment coordination. Virtual try-on algorithm based on the customer's 2D/mago was accomplished using imagewarping technique. The system architecture and the software framework were also described. The results show that the 'system is a practical and useful application for fashion retailers.
基金Project supported by the National Natural Science Foundation of China (No. 50908165)the Fundamental Research Funds for the Central Universities (No. 0400219207), China
文摘An intrusion of contaminants into the water distribution network (WDN) can occur through storage tanks (via animals, dust-carrying bacteria, and infiltration) and pipes. A sensor network could yield useful observations that help identify the location of the source, the strength, the time of occurrence, and the duration of contamination. This paper proposes a methodology for identifying the contamination sources in a water distribution system, which identifies the key characteristics of contamination, such as location, starting time, and injection rates at different time intervals. Based on simplified hypotheses and associated with a high computational efficiency, the methodology is designed to be a simple and easy-to-use tool for water companies to ensure rapid identification of the contamination sources, The proposed methodology identifies the characteristics of pollution sources by matching the dynamic patterns of the simulated and measured concentrations. The application of this methodology to a literature network and a real WDN are illustrated with the aid of an example. The results showed that if contaminants are transported from the sources to the sensors at intervals, then this method can identify the most possible ones from candidate pollution sources. However, if the contamination data is minimal, a greater number of redundant contamination source nodes will be present. Consequently, more data from different sensors obtained through network monitoring are required to effectively use this method for locating multi-sources of contamination in the WDN.
基金Key Project of the Chinese Academy of Sciences,No.ZDRW-ZS-2016-6-3National Natural Science Foundation of China,No.41501490
文摘The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while ignoring the structural diversity of different sub-networks. In this paper, we evaluate the robustness of the global cargo ship transportation network based on the most recent Automatic Identification System(AIS) data available. First, we subdivide three typical cargo ship transportation networks(i.e., oil tanker, container ship and bulk carrier) from the original cargo ship transportation network. Then, we design statistical indices based on complex network theory and employ four attack strategies, including random attack and three intentional attacks(i.e., degree-based attack, betweenness-based attack and flux-based attack) to evaluate the robustness of the three typical cargo ship transportation networks. Finally, we compare the integrity of the remaining ports of the network when a small proportion of ports lose their function. The results show that 1) compared with the holistic cargo ship transportation network, the fine-grain-based cargo ship transportation networks can fully reflect the pattern and process of global cargo transportation; 2) different cargo ship networks behave heterogeneously in terms of their robustness, with the container network being the weakest and the bulk carrier network being the strongest; and 3) small-scale intentional attacks may have significant influence on the integrity of the container network but a minor impact on the bulk carrier and oil tanker transportation networks. These conclusions can help improve the decision support capabilities in maritime transportation planning and emergency response and facilitate the establishment of a more reliable maritime transportation system.Abstract: The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while ignoring the structural diversity of different sub-networks. In this paper, we evaluate the robustness of the global cargo ship transporta- tion network based on the most recent Automatic Identification System (AIS) data available. First, we subdivide three typical cargo ship transportation networks (i.e., oil tanker, container ship and bulk carrier) from the original cargo ship transportation network. Then, we design statistical indices based on complex network theory and employ four attack strategies, in- cluding random attack and three intentional attacks (i.e., degree-based attack, between- ness-based attack and flux-based attack) to evaluate the robustness of the three typical cargo ship transportation networks. Finally, we compare the integrity of the remaining ports of the network when a small proportion of ports lose their function. The results show that 1) com- pared with the holistic cargo ship transportation network, the fine-grain-based cargo ship transportation networks can fully reflect the pattern and process of global cargo transportation 2) different cargo ship networks behave heterogeneously in terms of their robustness, with the container network being the weakest and the bulk carrier network being the strongest; and 3) small-scale intentional attacks may have significant influence on the integrity of the con- tainer network but a minor impact on the bulk carrier and oil tanker transportation networks.These conclusions can help improve the decision support capabilities in maritime transportation planning and emergency response and facilitate the establishment of a more reliable maritime transportation system.