In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymm...In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymmetry and node asymmetry. The decision and mapping rule for symmetric and asymmetric cases are studied. The performance in terms of bit error rate for each case will be studied and analysed by computer simulation. Analytical and simulation results show that uplink asymmetry is the worst case;intra-phase asymmetry and unreliable uplink channels will more severely affect the performance degradation, which is caused by channel asymmetry.展开更多
Internet access is becoming even more heterogeneous, including different wireless backhauling links, with Ka-band satellites as a possible alternative. Since communication path is unknown a priori, adoption of PEP sol...Internet access is becoming even more heterogeneous, including different wireless backhauling links, with Ka-band satellites as a possible alternative. Since communication path is unknown a priori, adoption of PEP solutions to optimize TCP performance over satellite is discouraged to allow dynamic network reconfigurations. To opposite, an endto-end TCP performance evaluation on such a challenging scenario, with possible large latency and transmission losses, is herein considered of paramount importance. Several TCP variants exist to tackle different aspects of communication networks. In Linux, the different TCP congestion control schemes differ from the theoretical formulations and RFC specifications, introducing a varying set of optimizations and options. This aspect makes difficult to identify a standard/reference TCP version for the proposed scenario, while testing with the real protocol stacks is deemed necessary to obtain consistent results. In addition, an innovative end-to-end TCP, namely TCP Wave, is introduced to replace the traditional window-based transmission with a burst-based strategy, representing a valid alternative to Linux TCP. To offer a fair, realistic and comprehensive evaluation, we configured a simulation setup where different Linux TCPs can be run within ns-3 network simulator and compared with TCP Wave.展开更多
In the cloud data centers,how to map virtual machines(VMs) on physical machines(PMs) to reduce the energy consumption is becoming one of the major issues,and the existing VM scheduling schemes are mostly to reduce ene...In the cloud data centers,how to map virtual machines(VMs) on physical machines(PMs) to reduce the energy consumption is becoming one of the major issues,and the existing VM scheduling schemes are mostly to reduce energy consumption by optimizing the utilization of physical servers or network elements.However,the aggressive consolidation of these resources may lead to network performance degradation.In view of this,this paper proposes a two-stage VM scheduling scheme:(1) We propose a static VM placement scheme to minimize the number of activating PMs and network elements to reduce the energy consumption;(2) In the premise of minimizing the migration costs,we propose a dynamic VM migration scheme to minimize the maximum link utilization to improve the network performance.This scheme makes a tradeoff between energy efficiency and network performance.We design a new twostage heuristic algorithm for a solution,and the simulations show that our solution achieves good results.展开更多
Wireless Mesh Network has drawn much attention due to wide area service coverage with low system cost and being easy to install.However,WMN suffers from high bit error rate,which provides different link capacity among...Wireless Mesh Network has drawn much attention due to wide area service coverage with low system cost and being easy to install.However,WMN suffers from high bit error rate,which provides different link capacity among wireless mesh routers.The conventional routing metrics select the path based on link quality.The link with the best quality is preferred as the data transmission path,and thus all nodes likely select the same link,which leads to network performance degradation.This paper proposes a routing metric that considers the available bandwidth and the number of nodes suffering congestion in the path.It is confirmed that the proposed method provides higher network performance of reduced delay,reduced packet loss and increased throughput than conventional routing metrics.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61101248the Equipment Advance Research Projectof"Twelfth Five-Year"Plan under Grant No.51306040202And this work has been performed in the Project"Advanced Communication Research Program(ACRP)"supported by the Directorate of Research and Development,Defense Science and Technology Agency,Singapore under Grant No.DSOCL04020
文摘In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymmetry and node asymmetry. The decision and mapping rule for symmetric and asymmetric cases are studied. The performance in terms of bit error rate for each case will be studied and analysed by computer simulation. Analytical and simulation results show that uplink asymmetry is the worst case;intra-phase asymmetry and unreliable uplink channels will more severely affect the performance degradation, which is caused by channel asymmetry.
文摘Internet access is becoming even more heterogeneous, including different wireless backhauling links, with Ka-band satellites as a possible alternative. Since communication path is unknown a priori, adoption of PEP solutions to optimize TCP performance over satellite is discouraged to allow dynamic network reconfigurations. To opposite, an endto-end TCP performance evaluation on such a challenging scenario, with possible large latency and transmission losses, is herein considered of paramount importance. Several TCP variants exist to tackle different aspects of communication networks. In Linux, the different TCP congestion control schemes differ from the theoretical formulations and RFC specifications, introducing a varying set of optimizations and options. This aspect makes difficult to identify a standard/reference TCP version for the proposed scenario, while testing with the real protocol stacks is deemed necessary to obtain consistent results. In addition, an innovative end-to-end TCP, namely TCP Wave, is introduced to replace the traditional window-based transmission with a burst-based strategy, representing a valid alternative to Linux TCP. To offer a fair, realistic and comprehensive evaluation, we configured a simulation setup where different Linux TCPs can be run within ns-3 network simulator and compared with TCP Wave.
基金supported by the National Natural Science Foundation of China(61002011)the National High Technology Research and Development Program of China(863 Program)(2013AA013303)+1 种基金the Fundamental Research Funds for the Central Universities(2013RC1104)the Open Fund of the State Key Laboratory of Software Development Environment(SKLSDE-2009KF-2-08)
文摘In the cloud data centers,how to map virtual machines(VMs) on physical machines(PMs) to reduce the energy consumption is becoming one of the major issues,and the existing VM scheduling schemes are mostly to reduce energy consumption by optimizing the utilization of physical servers or network elements.However,the aggressive consolidation of these resources may lead to network performance degradation.In view of this,this paper proposes a two-stage VM scheduling scheme:(1) We propose a static VM placement scheme to minimize the number of activating PMs and network elements to reduce the energy consumption;(2) In the premise of minimizing the migration costs,we propose a dynamic VM migration scheme to minimize the maximum link utilization to improve the network performance.This scheme makes a tradeoff between energy efficiency and network performance.We design a new twostage heuristic algorithm for a solution,and the simulations show that our solution achieves good results.
基金supported by the ubiquitous Computing and Network(UCN)Projectthe Ministry of Knowledge and Econ-omy(MKE)Knowledge and Economy Frontier R&DProgramin Korea as a result of UCN′s subproject10C2-C1-20Ssupported by the MKE(The Ministry of Knowledge Economy),Korea,under the Convergence-ITRC(Convergence Infor mation Technology Research Center)support program(NIPA-2011-C6150-1101-0004)
文摘Wireless Mesh Network has drawn much attention due to wide area service coverage with low system cost and being easy to install.However,WMN suffers from high bit error rate,which provides different link capacity among wireless mesh routers.The conventional routing metrics select the path based on link quality.The link with the best quality is preferred as the data transmission path,and thus all nodes likely select the same link,which leads to network performance degradation.This paper proposes a routing metric that considers the available bandwidth and the number of nodes suffering congestion in the path.It is confirmed that the proposed method provides higher network performance of reduced delay,reduced packet loss and increased throughput than conventional routing metrics.