Wireless sensor networks(WSNs)consist of a great deal of sensor nodes with limited power,computation,storage,sensing and communication capabilities.Data aggregation is a very important technique,which is designed to s...Wireless sensor networks(WSNs)consist of a great deal of sensor nodes with limited power,computation,storage,sensing and communication capabilities.Data aggregation is a very important technique,which is designed to substantially reduce the communication overhead and energy expenditure of sensor node during the process of data collection in a WSNs.However,privacy-preservation is more challenging especially in data aggregation,where the aggregators need to perform some aggregation operations on sensing data it received.We present a state-of-the art survey of privacy-preserving data aggregation in WSNs.At first,we classify the existing privacy-preserving data aggregation schemes into different categories by the core privacy-preserving techniques used in each scheme.And then compare and contrast different algorithms on the basis of performance measures such as the privacy protection ability,communication consumption,power consumption and data accuracy etc.Furthermore,based on the existing work,we also discuss a number of open issues which may intrigue the interest of researchers for future work.展开更多
This paper aims to find a practical way of quantitatively representing the privacy of network data. A method of quantifying the privacy of network data anonymization based on similarity distance and entropy in the sce...This paper aims to find a practical way of quantitatively representing the privacy of network data. A method of quantifying the privacy of network data anonymization based on similarity distance and entropy in the scenario involving multiparty network data sharing with Trusted Third Party (TTP) is proposed. Simulations are then conducted using network data from different sources, and show that the measurement indicators defined in this paper can adequately quantify the privacy of the network. In particular, it can indicate the effect of the auxiliary information of the adversary on privacy.展开更多
基金supported in part by the National Natural Science Foundation of China(No.61272084,61202004)the Natural Science Foundation of Jiangsu Province(No.BK20130096)the Project of Natural Science Research of Jiangsu University(No.14KJB520031,No.11KJA520002)
文摘Wireless sensor networks(WSNs)consist of a great deal of sensor nodes with limited power,computation,storage,sensing and communication capabilities.Data aggregation is a very important technique,which is designed to substantially reduce the communication overhead and energy expenditure of sensor node during the process of data collection in a WSNs.However,privacy-preservation is more challenging especially in data aggregation,where the aggregators need to perform some aggregation operations on sensing data it received.We present a state-of-the art survey of privacy-preserving data aggregation in WSNs.At first,we classify the existing privacy-preserving data aggregation schemes into different categories by the core privacy-preserving techniques used in each scheme.And then compare and contrast different algorithms on the basis of performance measures such as the privacy protection ability,communication consumption,power consumption and data accuracy etc.Furthermore,based on the existing work,we also discuss a number of open issues which may intrigue the interest of researchers for future work.
基金supported by the National Key Basic Research Program of China (973 Program) under Grant No. 2009CB320505the Fundamental Research Funds for the Central Universities under Grant No. 2011RC0508+2 种基金the National Natural Science Foundation of China under Grant No. 61003282China Next Generation Internet Project "Research and Trial on Evolving Next Generation Network Intelligence Capability Enhancement"the National Science and Technology Major Project "Research about Architecture of Mobile Internet" under Grant No. 2011ZX03002-001-01
文摘This paper aims to find a practical way of quantitatively representing the privacy of network data. A method of quantifying the privacy of network data anonymization based on similarity distance and entropy in the scenario involving multiparty network data sharing with Trusted Third Party (TTP) is proposed. Simulations are then conducted using network data from different sources, and show that the measurement indicators defined in this paper can adequately quantify the privacy of the network. In particular, it can indicate the effect of the auxiliary information of the adversary on privacy.