This paper proposes a redundancy optimization method for smart grid Advanced Metering Infrastructure(AMI) to realize economy and reliability targets.AMI is a crucial part of the smart grid to measure,collect,and analy...This paper proposes a redundancy optimization method for smart grid Advanced Metering Infrastructure(AMI) to realize economy and reliability targets.AMI is a crucial part of the smart grid to measure,collect,and analyze data about energy usage and power quality from customer premises.From the communication perspective,the AMI consists of smart meters,Home Area Network(HAN) gateways and data concentrators;in particular,the redundancy optimization problem focus on deciding which data concentrator needs redundancy.In order to solve the problem,we first develop a quantitative analysis model for the network economic loss caused by the data concentrator failures.Then,we establish a complete redundancy optimization model,which comprehensively consider the factors of reliability and economy.Finally,an advanced redundancy deployment method based on genetic algorithm(GA) is developed to solve the proposed problem.The simulation results testify that the proposed redundancy optimization method is capable to build a reliable and economic smart grid communication network.展开更多
Currently, the elastic interconnection has realized the high-rate data transmission among data centers(DCs). Thus, the elastic data center network(EDCN) emerged. In EDCNs, it is essential to achieve the virtual networ...Currently, the elastic interconnection has realized the high-rate data transmission among data centers(DCs). Thus, the elastic data center network(EDCN) emerged. In EDCNs, it is essential to achieve the virtual network(VN) embedding, which includes two main components: VM(virtual machine) mapping and VL(virtual link) mapping. In VM mapping, we allocate appropriate servers to hold VMs. While for VL mapping,an optimal substrate path is determined for each virtual lightpath. For the VN embedding in EDCNs, the power efficiency is a significant concern, and some solutions were proposed through sleeping light-duty servers.However, the increasing communication traffic between VMs leads to a serious energy dissipation problem, since it also consumes a great amount of energy on switches even utilizing the energy-efficient optical transmission technique. In this paper, considering load balancing and power-efficient VN embedding, we formulate the problem and design a novel heuristic for EDCNs, with the objective to achieve the power savings of servers and switches. In our solution, VMs are mapped into a single DC or multiple DCs with the short distance between each other, and the servers in the same cluster or adjacent clusters are preferred to hold VMs. Such that, a large amount of servers and switches will become vacant and can go into sleep mode. Simulation results demonstrate that our method performs well in terms of power savings and load balancing. Compared with benchmarks, the improvement ratio of power efficiency is 5%–13%.展开更多
基金supported by the National HighTech ResearchDevelopment Program of China (863) under Grant No.2012AA050801
文摘This paper proposes a redundancy optimization method for smart grid Advanced Metering Infrastructure(AMI) to realize economy and reliability targets.AMI is a crucial part of the smart grid to measure,collect,and analyze data about energy usage and power quality from customer premises.From the communication perspective,the AMI consists of smart meters,Home Area Network(HAN) gateways and data concentrators;in particular,the redundancy optimization problem focus on deciding which data concentrator needs redundancy.In order to solve the problem,we first develop a quantitative analysis model for the network economic loss caused by the data concentrator failures.Then,we establish a complete redundancy optimization model,which comprehensively consider the factors of reliability and economy.Finally,an advanced redundancy deployment method based on genetic algorithm(GA) is developed to solve the proposed problem.The simulation results testify that the proposed redundancy optimization method is capable to build a reliable and economic smart grid communication network.
基金supported in part by Open Foundation of State Key Laboratory of Information Photonics and Optical Communications (Grant No. IPOC2014B009)Fundamental Research Funds for the Central Universities (Grant Nos. N130817002, N140405005, N150401002)+3 种基金Foundation of the Education Department of Liaoning Province (Grant No. L2014089)National Natural Science Foundation of China (Grant Nos. 61302070, 61401082, 61471109, 61502075)Liaoning Bai Qian Wan Talents ProgramNational High-Level Personnel Special Support Program for Youth Top-Notch Talent
文摘Currently, the elastic interconnection has realized the high-rate data transmission among data centers(DCs). Thus, the elastic data center network(EDCN) emerged. In EDCNs, it is essential to achieve the virtual network(VN) embedding, which includes two main components: VM(virtual machine) mapping and VL(virtual link) mapping. In VM mapping, we allocate appropriate servers to hold VMs. While for VL mapping,an optimal substrate path is determined for each virtual lightpath. For the VN embedding in EDCNs, the power efficiency is a significant concern, and some solutions were proposed through sleeping light-duty servers.However, the increasing communication traffic between VMs leads to a serious energy dissipation problem, since it also consumes a great amount of energy on switches even utilizing the energy-efficient optical transmission technique. In this paper, considering load balancing and power-efficient VN embedding, we formulate the problem and design a novel heuristic for EDCNs, with the objective to achieve the power savings of servers and switches. In our solution, VMs are mapped into a single DC or multiple DCs with the short distance between each other, and the servers in the same cluster or adjacent clusters are preferred to hold VMs. Such that, a large amount of servers and switches will become vacant and can go into sleep mode. Simulation results demonstrate that our method performs well in terms of power savings and load balancing. Compared with benchmarks, the improvement ratio of power efficiency is 5%–13%.