期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
构造性算法的神经网络集成在近红外光谱分析中的应用 被引量:1
1
作者 王国林 黄聪明 《光谱实验室》 CAS CSCD 2005年第3期473-476,共4页
针对传统的近红外数据分析方法精度较低、,应用的局限性问题,本文提出了一种基于构造性算法的神经网络集成方法,由一个构造性算法决定个体网络中隐层节点的数量以保证个体网络的精确性,运用负相关学习算法和网络个体训练次数不同保证了... 针对传统的近红外数据分析方法精度较低、,应用的局限性问题,本文提出了一种基于构造性算法的神经网络集成方法,由一个构造性算法决定个体网络中隐层节点的数量以保证个体网络的精确性,运用负相关学习算法和网络个体训练次数不同保证了网络个体的多样性。这种方法在近红外光谱分析中得到了成功的应用。 展开更多
关键词 神经网络集成 负相关算法 近红外光谱
下载PDF
一种逆向样本分布的Boosting类新算法
2
作者 高敬阳 陈程立诏 朱群雄 《化工学报》 EI CAS CSCD 北大核心 2011年第8期2287-2291,共5页
对IB(Inverse Boosting)神经网络集成算法进行了研究,提出了IB算法的改进算法IB+算法。改进算法继承了IB算法的逆向样本分布调整策略,并在训练的过程中将部分已训练好的个体子网进行中间层网络集成,利用该中间层集成网络生成新的训练样... 对IB(Inverse Boosting)神经网络集成算法进行了研究,提出了IB算法的改进算法IB+算法。改进算法继承了IB算法的逆向样本分布调整策略,并在训练的过程中将部分已训练好的个体子网进行中间层网络集成,利用该中间层集成网络生成新的训练样本分布。实验结果表明,对于逆向权值分布的Boosting类算法,个体子网之间的关联度对网络集成后的泛化性能影响很小,减小个体网络的泛化误差将使集成后的泛化性能提高。 展开更多
关键词 网络集成算法 逆向样本权值分布 中间层网络集成
下载PDF
BIDIRECTIONAL ASSOCIATIVE MEMORY ENSEMBLE
3
作者 王敏 储荣 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第4期343-348,共6页
The multiple classifier system (MCS), composed of multiple diverse classifiers or feed-forward neural networks, can significantly improve the classification or generalization ability of a single classifier. Enlighte... The multiple classifier system (MCS), composed of multiple diverse classifiers or feed-forward neural networks, can significantly improve the classification or generalization ability of a single classifier. Enlightened by the fundamental idea of MCS, the ensemble is introduced into the quick learning for bidirectional associative memory (QLBAM) to construct a BAM ensemble, for improving the storage capacity and the error-correction capability without destroying the simple structure of the component BAM. Simulations show that, with an appropriate "overproduce and choose" strategy or "thinning" algorithm, the proposed BAM ensemble significantly outperforms the single QLBAM in both storage capacity and noise-tolerance capability. 展开更多
关键词 bidirectional associative memory neural network ensemble thinning algorithm
下载PDF
高强混凝土强度预测人工智能方法及应用 被引量:7
4
作者 俞桂良 《混凝土》 CAS CSCD 北大核心 2010年第10期41-43,共3页
高强混凝土的强度预测是一个动态性可变复杂问题,受各种因素的影响。采用多种智能方法,建立了高强混凝土的强度预测的遗传算法与神经网络的集成模型。并将该模型计算结果与实测混凝土28 d抗压强度,RBF径向基函数神经网络计算的强度,非... 高强混凝土的强度预测是一个动态性可变复杂问题,受各种因素的影响。采用多种智能方法,建立了高强混凝土的强度预测的遗传算法与神经网络的集成模型。并将该模型计算结果与实测混凝土28 d抗压强度,RBF径向基函数神经网络计算的强度,非线性回归模型计算的强度进行比较。研究表明:预测结果与实测结果吻合较好,较线性回归和神经网络预测精度高,为高强混凝土的强度预测提供了一条新方法。 展开更多
关键词 高强混凝土 遗传算法与神经网络集成模型 强度预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部