Cascading failures often occur in congested networks such as the Internet. A cascading failure can be described as a three-phase process: generation, diffusion, and dissipation of the congestion. In this account, we ...Cascading failures often occur in congested networks such as the Internet. A cascading failure can be described as a three-phase process: generation, diffusion, and dissipation of the congestion. In this account, we present a function that represents the extent of congestion on a given node. This approach is different from existing fimctions based on betweenness centrality. By introducing the concept of 'delay time', we designate an intergradation between permanent removal and nonremoval. We also construct an evaluation fimction of network efficiency, based on congestion, which measures the damage caused by cascading failures. Finally, we investigate the effects of network structure and size, delay time, processing ability and packet generation speed on congestion propagation. Also, we uncover the relationship between the cascade dynamics and some properties of the network such as structure and size.展开更多
There were many contradictory evaluation criteria to select next-hop in the delay-disruption tolerance networks(DTN).To solve this problem,an attribute hierarchical model was proposed,in which the predefined criteria ...There were many contradictory evaluation criteria to select next-hop in the delay-disruption tolerance networks(DTN).To solve this problem,an attribute hierarchical model was proposed,in which the predefined criteria were summarized as static identity attributes,forwarding desire attributes and delivery capability attributes(IDC).Based on this model,a novel multi-attributes congestion aware routing(MACAR) scheme with uncertain information for next-hop selection was presented,by adopting an decision theory to aggregate attributes with belief structure and computing partial ordering relations.The simulation results show that MACAR presents higher successful delivery rate,lower average delay and effectively alleviate congestion.展开更多
An explicit congestion notification (ECN)-based distributed transport protocol,ARROW-WTCP (AcceleRate tRansmission towards Optimal Window size TCP for Wireless network),was proposed.The ARROW-WTCP enables feasible dep...An explicit congestion notification (ECN)-based distributed transport protocol,ARROW-WTCP (AcceleRate tRansmission towards Optimal Window size TCP for Wireless network),was proposed.The ARROW-WTCP enables feasible deployment of ARROW-TCP from wired to wireless networks by providing a joint design of source and router algorithms.The protocol obtains the actual capacity of the wireless channel by calculating the queue variation in base station (BS) and adjusts the congestion window by using the feedback from its bottleneck link.The simulation results show that the ARROW-WTCP achieves strong stability,max-min fairness in dynamic networks,fast convergence to efficiency without introducing much excess traffic,and almost full link utilization in the steady state.It outperforms the XCP-B (eXplicit Control Protocol Blind),the wireless version of XCP,in terms of stability,fairness,convergence and utilization in wireless networks.展开更多
基金the National Natural Science Foundation of China (No. 60573128)the Ph.D. Programs Foundation of Ministry of Education of China (No. 20060183043)+1 种基金the China–British Columbia Innovation and Commercialization Strategic Develop-ment Grant (No. 2008DFA12140)the Jilin University 985 Graduate Student Innovation Foundation (No. 20080235)
文摘Cascading failures often occur in congested networks such as the Internet. A cascading failure can be described as a three-phase process: generation, diffusion, and dissipation of the congestion. In this account, we present a function that represents the extent of congestion on a given node. This approach is different from existing fimctions based on betweenness centrality. By introducing the concept of 'delay time', we designate an intergradation between permanent removal and nonremoval. We also construct an evaluation fimction of network efficiency, based on congestion, which measures the damage caused by cascading failures. Finally, we investigate the effects of network structure and size, delay time, processing ability and packet generation speed on congestion propagation. Also, we uncover the relationship between the cascade dynamics and some properties of the network such as structure and size.
基金Project(60973127) supported by the National Natural Science Foundation of ChinaProject(09JJ3123) supported by the Natural Science Foundation of Hunan Province,China
文摘There were many contradictory evaluation criteria to select next-hop in the delay-disruption tolerance networks(DTN).To solve this problem,an attribute hierarchical model was proposed,in which the predefined criteria were summarized as static identity attributes,forwarding desire attributes and delivery capability attributes(IDC).Based on this model,a novel multi-attributes congestion aware routing(MACAR) scheme with uncertain information for next-hop selection was presented,by adopting an decision theory to aggregate attributes with belief structure and computing partial ordering relations.The simulation results show that MACAR presents higher successful delivery rate,lower average delay and effectively alleviate congestion.
基金Projects(60873265,60903222) supported by the National Natural Science Foundation of China Project(IRT0661) supported by the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘An explicit congestion notification (ECN)-based distributed transport protocol,ARROW-WTCP (AcceleRate tRansmission towards Optimal Window size TCP for Wireless network),was proposed.The ARROW-WTCP enables feasible deployment of ARROW-TCP from wired to wireless networks by providing a joint design of source and router algorithms.The protocol obtains the actual capacity of the wireless channel by calculating the queue variation in base station (BS) and adjusts the congestion window by using the feedback from its bottleneck link.The simulation results show that the ARROW-WTCP achieves strong stability,max-min fairness in dynamic networks,fast convergence to efficiency without introducing much excess traffic,and almost full link utilization in the steady state.It outperforms the XCP-B (eXplicit Control Protocol Blind),the wireless version of XCP,in terms of stability,fairness,convergence and utilization in wireless networks.