MANET routing is critical and routing decision should be made sooner before the node leaves the network.Fast decisions always compensate network performance.In addition,most MANET routing protocols assume a friendly a...MANET routing is critical and routing decision should be made sooner before the node leaves the network.Fast decisions always compensate network performance.In addition,most MANET routing protocols assume a friendly and cooperative environment,and hence are vulnerable to various attacks.Trust and Reputation would serve as a major solution to these problems.Learning the network characteristics and choosing right routing decisions at right times would be a significant solution.In this work,we have done an extensive survey of fault tolerant protocols and ant colony algorithms applied to routing in MANETs.We propose a QoS constrained fault tolerant ant lookahead routing algorithm which attempts to identify valid route and look-ahead route pairs which might help in choosing the alternate path in case of valid route failure.The results prove that the proposed algorithm takes better routing decisions with 20-30 percent improvement compared with existing ant colony algorithms.展开更多
Cascading failures often occur in congested networks such as the Internet. A cascading failure can be described as a three-phase process: generation, diffusion, and dissipation of the congestion. In this account, we ...Cascading failures often occur in congested networks such as the Internet. A cascading failure can be described as a three-phase process: generation, diffusion, and dissipation of the congestion. In this account, we present a function that represents the extent of congestion on a given node. This approach is different from existing fimctions based on betweenness centrality. By introducing the concept of 'delay time', we designate an intergradation between permanent removal and nonremoval. We also construct an evaluation fimction of network efficiency, based on congestion, which measures the damage caused by cascading failures. Finally, we investigate the effects of network structure and size, delay time, processing ability and packet generation speed on congestion propagation. Also, we uncover the relationship between the cascade dynamics and some properties of the network such as structure and size.展开更多
The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the ...The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.展开更多
In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propag...In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propagation paths with their lengths if faults occur.First,the physical structure system,function behavior,and complex network theory are integrated to define a system structural-action network(SSAN).Second,based on the concept of SSAN,two properties of nodes and edges,i.e.,the topological property and reliability property,are combined to define the failure propagation property.Third,the proposed MPPS model provides all fault propagation paths and possible failure rates of nodes on these paths.Finally,numerical experiments have been implemented to show the accuracy and advancement compared with the methods of Function Space Iteration(FSI)and the algorithm of Ant Colony Optimization(ACO).展开更多
Configuration errors are proved to be the main reasons for network interruption and anomalies.Many researchers have paid their attention to configuration analysis and provisioning,but few works focus on understanding ...Configuration errors are proved to be the main reasons for network interruption and anomalies.Many researchers have paid their attention to configuration analysis and provisioning,but few works focus on understanding the configuration evolution.In this paper,we uncover the configuration evolution of an operational IP backbone based on the weekly reports gathered from January 2006 to January 2013.We find that rate limiting and launching routes for new customers are configured most frequently.In addition,we conduct an analysis of network failures and find that link failures are the main causes for network failures.We suggest that we should configure redundant links for the links which are easy to break down.At last,according to the analysis results,we illustrate how to provide semi-automated configuration for rate limiting and adding customers.展开更多
Lifelines, such as pipeline, transportation, communication, electric transmission and medical rescue systems, are complicated networks that always distribute spatially over large geological and geographic units. The q...Lifelines, such as pipeline, transportation, communication, electric transmission and medical rescue systems, are complicated networks that always distribute spatially over large geological and geographic units. The quantification of their reliability under an earthquake occurrence should be highly regarded, because the performance of these systems during a destructive earthquake is vital in order to estimate direct and indirect economic losses from lifeline failures, and is also related to laying out a rescue plan. The research in this paper aims to develop a new earthquake reliability calculation methodology for lifeline systems. The methodology of the network reliability for lifeline systems is based on fault tree analysis (FTA) and geological information system (GIS). The interactions existing in a lifeline system ale considered herein. The lifeline systems are idealized as equivalent networks, consisting of nodes and links, and are described by network analysis in GIS. Firstly, the node is divided into two types: simple node and complicated node, where the reliability of the complicated node is calculated by FTA and interaction is regarded as one factor to affect performance of the nodes. The reliability of simple node and link is evaluated by code. Then, the reliability of the entilre network is assessed based on GIS and FTA. Lastly, an illustration is given to show the methodology.展开更多
The objective of this study is to investigate a network failure problem with a significant path, emerging from the context of crisis management, such as in the case of natural disasters. For a given tree with m failed...The objective of this study is to investigate a network failure problem with a significant path, emerging from the context of crisis management, such as in the case of natural disasters. For a given tree with m failed edges, we assume that we have sufficient resources to recover k edges of the m edges. Each node has a positive weight. In this situation, we consider which k edges should be fixed in order to maximize the sum of the weights of the nodes reachable from the significant path. In this paper, we formulate such a problem as a combinatorial problem. Further, we show that a part of our problem may be solved by translating it into the terms of the so-called tree knapsack problem.展开更多
In modem protection relays, the accurate and fast fault location is an essential task for transmission line protection from the point of service restoration and reliability. The applications of neural networks based f...In modem protection relays, the accurate and fast fault location is an essential task for transmission line protection from the point of service restoration and reliability. The applications of neural networks based fault location techniques to transmission line are available in many papers. However, almost all the studies have so far employed the FNN (feed-forward neural network) trained with back-propagation algorithm (BPNN) which has a better structure and been widely used. But there are still many drawbacks if we simply use feed-forward neural network, such as slow training rate, easy to trap into local minimum point, and bad ability on global search. In this paper, feed-forward neural network trained by PSO (particle swarm optimization) algorithm is proposed for fault location scheme in 500 kV transmission system with distributed parameters presentation, The purpose is to simulate distance protection relay. The algorithm acts as classifier which requires phasor measurements data from one end of the transmission line and DFT (discrete Fourier transform). Extensive simulation studies carried out using MATLAB show that the proposed scheme has the ability to give a good estimation of fault location under various fault conditions.展开更多
文摘MANET routing is critical and routing decision should be made sooner before the node leaves the network.Fast decisions always compensate network performance.In addition,most MANET routing protocols assume a friendly and cooperative environment,and hence are vulnerable to various attacks.Trust and Reputation would serve as a major solution to these problems.Learning the network characteristics and choosing right routing decisions at right times would be a significant solution.In this work,we have done an extensive survey of fault tolerant protocols and ant colony algorithms applied to routing in MANETs.We propose a QoS constrained fault tolerant ant lookahead routing algorithm which attempts to identify valid route and look-ahead route pairs which might help in choosing the alternate path in case of valid route failure.The results prove that the proposed algorithm takes better routing decisions with 20-30 percent improvement compared with existing ant colony algorithms.
基金the National Natural Science Foundation of China (No. 60573128)the Ph.D. Programs Foundation of Ministry of Education of China (No. 20060183043)+1 种基金the China–British Columbia Innovation and Commercialization Strategic Develop-ment Grant (No. 2008DFA12140)the Jilin University 985 Graduate Student Innovation Foundation (No. 20080235)
文摘Cascading failures often occur in congested networks such as the Internet. A cascading failure can be described as a three-phase process: generation, diffusion, and dissipation of the congestion. In this account, we present a function that represents the extent of congestion on a given node. This approach is different from existing fimctions based on betweenness centrality. By introducing the concept of 'delay time', we designate an intergradation between permanent removal and nonremoval. We also construct an evaluation fimction of network efficiency, based on congestion, which measures the damage caused by cascading failures. Finally, we investigate the effects of network structure and size, delay time, processing ability and packet generation speed on congestion propagation. Also, we uncover the relationship between the cascade dynamics and some properties of the network such as structure and size.
基金This project was supported by the National Nature Science Foundation of China(60372001)
文摘The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.
基金Project(2017JBZ103)supported by the Fundamental Research Funds for the Central Universities,China
文摘In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propagation paths with their lengths if faults occur.First,the physical structure system,function behavior,and complex network theory are integrated to define a system structural-action network(SSAN).Second,based on the concept of SSAN,two properties of nodes and edges,i.e.,the topological property and reliability property,are combined to define the failure propagation property.Third,the proposed MPPS model provides all fault propagation paths and possible failure rates of nodes on these paths.Finally,numerical experiments have been implemented to show the accuracy and advancement compared with the methods of Function Space Iteration(FSI)and the algorithm of Ant Colony Optimization(ACO).
基金supported by the National Natural Science Foundation of China under Grant Nos.61602105 and 61572123China Postdoctoral Science Foundation under Grant Nos.2016M601323+1 种基金the Fundamental Research Funds for the Central Universities Project under Grant No.N150403007CERNET Innovation Project under Grant No.NGII20160126
文摘Configuration errors are proved to be the main reasons for network interruption and anomalies.Many researchers have paid their attention to configuration analysis and provisioning,but few works focus on understanding the configuration evolution.In this paper,we uncover the configuration evolution of an operational IP backbone based on the weekly reports gathered from January 2006 to January 2013.We find that rate limiting and launching routes for new customers are configured most frequently.In addition,we conduct an analysis of network failures and find that link failures are the main causes for network failures.We suggest that we should configure redundant links for the links which are easy to break down.At last,according to the analysis results,we illustrate how to provide semi-automated configuration for rate limiting and adding customers.
基金Sponsored by the Natural Science Foundation of China (Grant No.50278028) the Scientific Research Foundation of Harbin Institute of Technology(Grant No.HIT200079).
文摘Lifelines, such as pipeline, transportation, communication, electric transmission and medical rescue systems, are complicated networks that always distribute spatially over large geological and geographic units. The quantification of their reliability under an earthquake occurrence should be highly regarded, because the performance of these systems during a destructive earthquake is vital in order to estimate direct and indirect economic losses from lifeline failures, and is also related to laying out a rescue plan. The research in this paper aims to develop a new earthquake reliability calculation methodology for lifeline systems. The methodology of the network reliability for lifeline systems is based on fault tree analysis (FTA) and geological information system (GIS). The interactions existing in a lifeline system ale considered herein. The lifeline systems are idealized as equivalent networks, consisting of nodes and links, and are described by network analysis in GIS. Firstly, the node is divided into two types: simple node and complicated node, where the reliability of the complicated node is calculated by FTA and interaction is regarded as one factor to affect performance of the nodes. The reliability of simple node and link is evaluated by code. Then, the reliability of the entilre network is assessed based on GIS and FTA. Lastly, an illustration is given to show the methodology.
文摘The objective of this study is to investigate a network failure problem with a significant path, emerging from the context of crisis management, such as in the case of natural disasters. For a given tree with m failed edges, we assume that we have sufficient resources to recover k edges of the m edges. Each node has a positive weight. In this situation, we consider which k edges should be fixed in order to maximize the sum of the weights of the nodes reachable from the significant path. In this paper, we formulate such a problem as a combinatorial problem. Further, we show that a part of our problem may be solved by translating it into the terms of the so-called tree knapsack problem.
文摘In modem protection relays, the accurate and fast fault location is an essential task for transmission line protection from the point of service restoration and reliability. The applications of neural networks based fault location techniques to transmission line are available in many papers. However, almost all the studies have so far employed the FNN (feed-forward neural network) trained with back-propagation algorithm (BPNN) which has a better structure and been widely used. But there are still many drawbacks if we simply use feed-forward neural network, such as slow training rate, easy to trap into local minimum point, and bad ability on global search. In this paper, feed-forward neural network trained by PSO (particle swarm optimization) algorithm is proposed for fault location scheme in 500 kV transmission system with distributed parameters presentation, The purpose is to simulate distance protection relay. The algorithm acts as classifier which requires phasor measurements data from one end of the transmission line and DFT (discrete Fourier transform). Extensive simulation studies carried out using MATLAB show that the proposed scheme has the ability to give a good estimation of fault location under various fault conditions.