Peer to Peer systems are emerging as one of the most popular Internet applications. Structured Peer to Peer overlay networks use identifier based routing algorithms to allow robustness, load balancing, and distrib...Peer to Peer systems are emerging as one of the most popular Internet applications. Structured Peer to Peer overlay networks use identifier based routing algorithms to allow robustness, load balancing, and distributed lookup needed in this environment. However, identifier based routing that is independent of Internet topology tends to be of low efficiency. Aimed at improving the routing efficiency, the super proximity routing algorithms presented in this paper combine Internet topology and overlay routing table in choosing the next hop. Experimental results showed that the algorithms greatly improve the efficiency of Peer to Peer routing.展开更多
Overlay networks have emerged as a useful approach to providing a general framework for new applications and services that are to be implemented without significantly changing the IP-layer network infrastructure.Overl...Overlay networks have emerged as a useful approach to providing a general framework for new applications and services that are to be implemented without significantly changing the IP-layer network infrastructure.Overlay routing has been used as an alternative to the default best effort Internet routing for the absence of end-to-end Quality of Service(QoS). While the former has recently been investigated, the conflict of QoS restraints and resource optimization remains unsolved. Recent studies have shown that overlay paths can give better latency, loss rate and TCP throughput. In this paper, a multi-dimensional QoS objective model based on the analysis of multiple QoS constraints has been presented, and a routing algorithm to optimise the overlay resource of its nodes and links is then proposed.In fact, the algorithm obtained multiple QoS values using probability theory to achieve the routing according to the multi-dimensional QoS objective vector of the QoS objective model. Simulation results reveals that the algorithm works better than other existing algorithms in balancing the network resources, and applications with stringent QoS requirements could be run.展开更多
This paper focuses on the quantitative analysis issue of the routing metrics tradeoff problem, and presents a Quantified Cost-Balanced overlay multicast routing scheme (QCost-Balanced) to the metric tradeoff problem b...This paper focuses on the quantitative analysis issue of the routing metrics tradeoff problem, and presents a Quantified Cost-Balanced overlay multicast routing scheme (QCost-Balanced) to the metric tradeoff problem between overlay path delay and access bandwidth at Multicast Server Nodes (MSN) for real-time ap-plications over Internet. Besides implementing a dynamic priority to MSNs by weighing the size of its service clients for better efficiency, QCost-Balanced tradeoffs these two metrics by a unified tradeoff metric based on quantitative analysis. Simulation experiments demonstrate that the scheme achieves a better tradeoff gain in both two metrics, and effective performance in metric quantitative control.展开更多
The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation sy...The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.展开更多
文摘Peer to Peer systems are emerging as one of the most popular Internet applications. Structured Peer to Peer overlay networks use identifier based routing algorithms to allow robustness, load balancing, and distributed lookup needed in this environment. However, identifier based routing that is independent of Internet topology tends to be of low efficiency. Aimed at improving the routing efficiency, the super proximity routing algorithms presented in this paper combine Internet topology and overlay routing table in choosing the next hop. Experimental results showed that the algorithms greatly improve the efficiency of Peer to Peer routing.
基金supported by the National Natural Science Foundation of China under Grant No.61071126the National Science and Technology Major Projects of New Generation Broadband Wireless Mobile Communication Network under Grants No.2010ZX0300400201,No.2010ZX03003-001,No.2010ZX03004-001-01,No.2011ZX03002-001-02
文摘Overlay networks have emerged as a useful approach to providing a general framework for new applications and services that are to be implemented without significantly changing the IP-layer network infrastructure.Overlay routing has been used as an alternative to the default best effort Internet routing for the absence of end-to-end Quality of Service(QoS). While the former has recently been investigated, the conflict of QoS restraints and resource optimization remains unsolved. Recent studies have shown that overlay paths can give better latency, loss rate and TCP throughput. In this paper, a multi-dimensional QoS objective model based on the analysis of multiple QoS constraints has been presented, and a routing algorithm to optimise the overlay resource of its nodes and links is then proposed.In fact, the algorithm obtained multiple QoS values using probability theory to achieve the routing according to the multi-dimensional QoS objective vector of the QoS objective model. Simulation results reveals that the algorithm works better than other existing algorithms in balancing the network resources, and applications with stringent QoS requirements could be run.
文摘This paper focuses on the quantitative analysis issue of the routing metrics tradeoff problem, and presents a Quantified Cost-Balanced overlay multicast routing scheme (QCost-Balanced) to the metric tradeoff problem between overlay path delay and access bandwidth at Multicast Server Nodes (MSN) for real-time ap-plications over Internet. Besides implementing a dynamic priority to MSNs by weighing the size of its service clients for better efficiency, QCost-Balanced tradeoffs these two metrics by a unified tradeoff metric based on quantitative analysis. Simulation experiments demonstrate that the scheme achieves a better tradeoff gain in both two metrics, and effective performance in metric quantitative control.
基金Under the auspices of National High Technology Research and Development Program of China (No.2007AA12Z242)
文摘The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.