An isothermal compressive experiment using Gleeble 1500 thermal simulator was studied to acquire flow stress at different deformation temperatures, strains and strain rates. The artificial neural networks with the err...An isothermal compressive experiment using Gleeble 1500 thermal simulator was studied to acquire flow stress at different deformation temperatures, strains and strain rates. The artificial neural networks with the error back propagation(BP) algorithm was used to establish constitutive model of 2519 aluminum alloy based on the experiment data. The model results show that the systematical error is small(δ=3.3%) when the value of objective function is 0.2, the number of nodes in the hidden layer is 5 and the learning rate is 0.1. Flow stresses of the material under various thermodynamic conditions are predicted by the neural network model, and the predicted results correspond with the experimental results. A knowledge-based constitutive relation model is developed.展开更多
The significant increase in speed of high-speed train will cause the dynamic contact force of the pantograph-catenary system to fluctuate more severely,which poses a challenge to the study of the pantograph-catenary r...The significant increase in speed of high-speed train will cause the dynamic contact force of the pantograph-catenary system to fluctuate more severely,which poses a challenge to the study of the pantograph-catenary relationship and the design of highspeed pantographs.Good pantograph-catenary coupling quality is the essential condition to ensure safe and efficient operation of high-speed train,stable and reliable current collection,and reduction in the wear of contact wires and pantograph contact strips.Among them,the dynamic parameters of high-speed pantographs are crucial to pantograph-catenary coupling quality.With the reduction of the standard deviation of the pantograph-catenary contact force as the optimization goal,multi-parameter joint optimization designs for the high-speed pantograph with two contact strips at multiple running speeds are proposed.Moreover,combining the sensitivity analysis at the optimal solutions,with the parameters and characteristics of in-service DSA380 highspeed pantograph,the optimization proposal of DSA380 was given.展开更多
文摘An isothermal compressive experiment using Gleeble 1500 thermal simulator was studied to acquire flow stress at different deformation temperatures, strains and strain rates. The artificial neural networks with the error back propagation(BP) algorithm was used to establish constitutive model of 2519 aluminum alloy based on the experiment data. The model results show that the systematical error is small(δ=3.3%) when the value of objective function is 0.2, the number of nodes in the hidden layer is 5 and the learning rate is 0.1. Flow stresses of the material under various thermodynamic conditions are predicted by the neural network model, and the predicted results correspond with the experimental results. A knowledge-based constitutive relation model is developed.
基金the National Natural Science Foundation of China(Grant No.11672297)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB22020200).
文摘The significant increase in speed of high-speed train will cause the dynamic contact force of the pantograph-catenary system to fluctuate more severely,which poses a challenge to the study of the pantograph-catenary relationship and the design of highspeed pantographs.Good pantograph-catenary coupling quality is the essential condition to ensure safe and efficient operation of high-speed train,stable and reliable current collection,and reduction in the wear of contact wires and pantograph contact strips.Among them,the dynamic parameters of high-speed pantographs are crucial to pantograph-catenary coupling quality.With the reduction of the standard deviation of the pantograph-catenary contact force as the optimization goal,multi-parameter joint optimization designs for the high-speed pantograph with two contact strips at multiple running speeds are proposed.Moreover,combining the sensitivity analysis at the optimal solutions,with the parameters and characteristics of in-service DSA380 highspeed pantograph,the optimization proposal of DSA380 was given.