A PbO2/Sb-SnO2/TiO2 nanotube array composite electrode was successfully synthesized and its electrochemical oxidation properties were investigated.Field-emission scanning electron microscopy(FE-SEM)and X-ray diffracti...A PbO2/Sb-SnO2/TiO2 nanotube array composite electrode was successfully synthesized and its electrochemical oxidation properties were investigated.Field-emission scanning electron microscopy(FE-SEM)and X-ray diffraction(XRD)results showed that the PbO2 coating was composed of anα-PbO2 inner layer and aβ-PbO2 outer layer.Accelerated life measurement indicated that the composite electrode had a lifetime of 815 h.Rhodamine B(RhB)was employed as a model pollutant to analyze the electrocatalytic activity of the electrode.The effects of initial RhB concentration,current density,initial pH,temperature,and chloride ion concentration on the electrochemical oxidation were investigated in detail.Inductively coupled plasma atomic emission spectroscopy(ICP-AES)results suggested that the concentration of leached Pb^2+in the electrolyte during the electrocatalytic oxidation process can be neglected.Finally,the degradation mechanism during the electrocatalytic oxidation process was proposed based on the results of solid-phase micro-extraction-gas chromatography-mass spectrometry(SPME-GC-MS).The high electrocatalytic performance of the composite electrode makes it a promising anode for the treatment of organic pollutants in aqueous solution.展开更多
The design and construction of heterojunction photocatalysts,which possess a staggered energy band structure and appropriate interfacial contact,is an effective way to achieve outstanding photocatalytic performance.In...The design and construction of heterojunction photocatalysts,which possess a staggered energy band structure and appropriate interfacial contact,is an effective way to achieve outstanding photocatalytic performance.In this study,2D/2D BiOBr/g‐C_(3)N_(4)heterojunctions were successfully obtained by a convenient in situ self‐assembly route.Under simulated sunlight irradiation,99%of RhB(10 mg·L–1,100 mL)was efficiently degraded by 1.5‐BiOBr/g‐C_(3)N_(4)within 30 min,which is better than the performance of both BiOBr and g‐C_(3)N_(4),and it has superior stability.In addition,the composite also exhibits enhanced photocatalytic activity for H2 production.The enhanced activity can be attributed to the intimate interface contact,the larger surface area,and the highly efficient separation of photoinduced electron–hole pairs.Based on the experimental results,a novel S‐scheme model was proposed to illuminate the transfer process of charge carriers.This study presents a simple way to develop novel step‐scheme photocatalysts for environmental and related applications.展开更多
Hierarchical TiO2 hollow nanoboxes(TiO2‐HNBs)assembled from TiO2 nanosheets(TiO2‐NSs)show improved photoreactivity when compared with the building blocks of discrete TiO2‐NSs.However,TiO2‐HNBs can only be excited ...Hierarchical TiO2 hollow nanoboxes(TiO2‐HNBs)assembled from TiO2 nanosheets(TiO2‐NSs)show improved photoreactivity when compared with the building blocks of discrete TiO2‐NSs.However,TiO2‐HNBs can only be excited by ultraviolet light.In this paper,visible‐light‐responsive N and S co‐doped TiO2‐HNBs were prepared by calcining the mixture of cubic TiOF2 and methionine(C5H11NO2S),a N‐and S‐containing biomacromolecule.The effect of calcination temperature on the structure and performance of the TiO2‐HNBs was systematically studied.It was found that methionine can prevent TiOF2‐to‐anatase TiO2 phase transformation.Both N and S elements are doped into the lattice of TiO2‐HNBs when the mixture of TiOF2 and methionine undergoes calcination at 400°C,which is responsible for the visible‐light response.When compared with that of pure 400°C‐calcined TiO2‐HNBs(T400),the photoreactivity of 400°C‐calcined methionine‐modified TiO2‐HNBs(TM400)improves 1.53 times in photocatalytic degradation of rhodamine‐B dye under visible irradiation(?>420 nm).The enhanced visible photoreactivity of methionine‐modified TiO2‐HNBs is also confirmed by photocatalytic oxidation of NO.The successful doping of N and S elements into the lattice of TiO2‐HNBs,resulting in the improved light‐harvesting ability and efficient separation of photo‐generated electron‐hole pairs,is responsible for the enhanced visible photocatalytic activity of methionine‐modified TiO2‐HNBs.The photoreactivity of methionine modified TiO2‐HNBs remains nearly unchanged even after being recycled five times,indicating its promising use in practical applications.展开更多
Hydrodynamic cavitation is a new technique in wastewater treatment processes. The degradation of Rbodamine B was studied on a 220 liters hydrodynamic cavitation setup using multiple hole orifice plates in this paper. ...Hydrodynamic cavitation is a new technique in wastewater treatment processes. The degradation of Rbodamine B was studied on a 220 liters hydrodynamic cavitation setup using multiple hole orifice plates in this paper. The experimental results showed that Rhodamine B was really decomposed by hydrodynamic cavitation. Some factors influencing degradation effect i.e. geometric parameters and operation conditions also were discussed. It was concluded there was the optimal ratio of total area of holes to crosssectional area of the pipe and the rate constant increased with a reduction in the value of the modified cavitional number.展开更多
基金supported by the National Natural Science Foundation of China(51073172)the Hunan Provincial Natural Science Foundation for Distinguished Young Scholars(14JJ1001)~~
基金supported by the National Natural Science Foundation of China(21507104)Natural Science Basic Research Plan in Shaanxi Province of China(2017JM2015)~~
文摘A PbO2/Sb-SnO2/TiO2 nanotube array composite electrode was successfully synthesized and its electrochemical oxidation properties were investigated.Field-emission scanning electron microscopy(FE-SEM)and X-ray diffraction(XRD)results showed that the PbO2 coating was composed of anα-PbO2 inner layer and aβ-PbO2 outer layer.Accelerated life measurement indicated that the composite electrode had a lifetime of 815 h.Rhodamine B(RhB)was employed as a model pollutant to analyze the electrocatalytic activity of the electrode.The effects of initial RhB concentration,current density,initial pH,temperature,and chloride ion concentration on the electrochemical oxidation were investigated in detail.Inductively coupled plasma atomic emission spectroscopy(ICP-AES)results suggested that the concentration of leached Pb^2+in the electrolyte during the electrocatalytic oxidation process can be neglected.Finally,the degradation mechanism during the electrocatalytic oxidation process was proposed based on the results of solid-phase micro-extraction-gas chromatography-mass spectrometry(SPME-GC-MS).The high electrocatalytic performance of the composite electrode makes it a promising anode for the treatment of organic pollutants in aqueous solution.
文摘The design and construction of heterojunction photocatalysts,which possess a staggered energy band structure and appropriate interfacial contact,is an effective way to achieve outstanding photocatalytic performance.In this study,2D/2D BiOBr/g‐C_(3)N_(4)heterojunctions were successfully obtained by a convenient in situ self‐assembly route.Under simulated sunlight irradiation,99%of RhB(10 mg·L–1,100 mL)was efficiently degraded by 1.5‐BiOBr/g‐C_(3)N_(4)within 30 min,which is better than the performance of both BiOBr and g‐C_(3)N_(4),and it has superior stability.In addition,the composite also exhibits enhanced photocatalytic activity for H2 production.The enhanced activity can be attributed to the intimate interface contact,the larger surface area,and the highly efficient separation of photoinduced electron–hole pairs.Based on the experimental results,a novel S‐scheme model was proposed to illuminate the transfer process of charge carriers.This study presents a simple way to develop novel step‐scheme photocatalysts for environmental and related applications.
基金supported by the National Natural Science Foundation of China(31402137,51672312,21373275)Hubei Province Science Fund for Distinguished Yong Scholars(2013CFA034)+2 种基金the Program for Excellent Talents in Hubei Province(RCJH15001)the Science and Technology Program of Wuhan(2016010101010018)the Fundamental Research Funds for the Central University,South-Central University for Nationalities(CZP17077,CZP18016)~~
文摘Hierarchical TiO2 hollow nanoboxes(TiO2‐HNBs)assembled from TiO2 nanosheets(TiO2‐NSs)show improved photoreactivity when compared with the building blocks of discrete TiO2‐NSs.However,TiO2‐HNBs can only be excited by ultraviolet light.In this paper,visible‐light‐responsive N and S co‐doped TiO2‐HNBs were prepared by calcining the mixture of cubic TiOF2 and methionine(C5H11NO2S),a N‐and S‐containing biomacromolecule.The effect of calcination temperature on the structure and performance of the TiO2‐HNBs was systematically studied.It was found that methionine can prevent TiOF2‐to‐anatase TiO2 phase transformation.Both N and S elements are doped into the lattice of TiO2‐HNBs when the mixture of TiOF2 and methionine undergoes calcination at 400°C,which is responsible for the visible‐light response.When compared with that of pure 400°C‐calcined TiO2‐HNBs(T400),the photoreactivity of 400°C‐calcined methionine‐modified TiO2‐HNBs(TM400)improves 1.53 times in photocatalytic degradation of rhodamine‐B dye under visible irradiation(?>420 nm).The enhanced visible photoreactivity of methionine‐modified TiO2‐HNBs is also confirmed by photocatalytic oxidation of NO.The successful doping of N and S elements into the lattice of TiO2‐HNBs,resulting in the improved light‐harvesting ability and efficient separation of photo‐generated electron‐hole pairs,is responsible for the enhanced visible photocatalytic activity of methionine‐modified TiO2‐HNBs.The photoreactivity of methionine modified TiO2‐HNBs remains nearly unchanged even after being recycled five times,indicating its promising use in practical applications.
文摘Hydrodynamic cavitation is a new technique in wastewater treatment processes. The degradation of Rbodamine B was studied on a 220 liters hydrodynamic cavitation setup using multiple hole orifice plates in this paper. The experimental results showed that Rhodamine B was really decomposed by hydrodynamic cavitation. Some factors influencing degradation effect i.e. geometric parameters and operation conditions also were discussed. It was concluded there was the optimal ratio of total area of holes to crosssectional area of the pipe and the rate constant increased with a reduction in the value of the modified cavitional number.