In this paper, a sensing model for the coverage analysis of wireless sensor networks is provided. Using this model and Monte Carlo method, the ratio of private range to sensing range required to obtain the desired cov...In this paper, a sensing model for the coverage analysis of wireless sensor networks is provided. Using this model and Monte Carlo method, the ratio of private range to sensing range required to obtain the desired coverage can be derived considering the scale of deployment area and the number of sensor nodes. Base on the coverage analysis, an energy-efficient distributed node scheduling scheme is proposed to prolong the network lifetime while maintaining the desired sensing coverage, which does not need the geographic or neighbor information of nodes. The proposed scheme can also handle uneven distribution, and it is robust against node failures. Theoretical and simulation results demonstrate its efficiency and usefulness.展开更多
基金Supported by China Scholarship Council(No.201306255014)
文摘In this paper, a sensing model for the coverage analysis of wireless sensor networks is provided. Using this model and Monte Carlo method, the ratio of private range to sensing range required to obtain the desired coverage can be derived considering the scale of deployment area and the number of sensor nodes. Base on the coverage analysis, an energy-efficient distributed node scheduling scheme is proposed to prolong the network lifetime while maintaining the desired sensing coverage, which does not need the geographic or neighbor information of nodes. The proposed scheme can also handle uneven distribution, and it is robust against node failures. Theoretical and simulation results demonstrate its efficiency and usefulness.