期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向SAR目标识别深度网络可理解的类激活映射方法
1
作者 崔宗勇 杨致远 +2 位作者 蒋阳 曹宗杰 杨建宇 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第2期428-442,共15页
随着深度学习方法在合成孔径雷达(SAR)图像解译领域的广泛应用,SAR目标识别深度网络可理解性问题逐渐受到学者的关注。类激活映射(CAM)作为常用的可理解性算法,能够通过热力图的方式,直观展示对识别任务起作用的显著性区域。然而作为一... 随着深度学习方法在合成孔径雷达(SAR)图像解译领域的广泛应用,SAR目标识别深度网络可理解性问题逐渐受到学者的关注。类激活映射(CAM)作为常用的可理解性算法,能够通过热力图的方式,直观展示对识别任务起作用的显著性区域。然而作为一种事后解释的方法,其只能静态展示当次识别过程中的显著性区域,无法动态展示当输入发生变化时显著性区域的变化规律。该文将扰动的思想引入类激活映射,提出了一种基于SAR背景杂波特性类激活映射方法(SCC-CAM),通过对输入图像引入同分布的全局扰动,逐步向SAR识别深度网络施加干扰,使得网络判决发生翻转,并在此刻计算网络神经元输出激活值的变化程度。该方法既能解决添加扰动可能带来的扰动传染问题,又能够动态观察和度量目标识别网络在识别过程中显著性区域的变化规律,从而增强深度网络的可理解性。在MSTAR数据集和OpenSARShip-1.0数据集上的试验表明,该文提出的算法具有更加精确的定位显著性区域的能力,相比于传统方法,在平均置信度下降率、置信度上升比例、信息量等评估指标上,所提算法具有更强的可理解性,能够作为通用的增强网络可理解性的方法。 展开更多
关键词 SAR目标识别 网络可理解性 SAR杂波特性 类激活映射 面积约束置信下降率
下载PDF
最小相关度优化PNARC算法的审计数据关联规则挖掘模型 被引量:2
2
作者 于海燕 《科技通报》 北大核心 2017年第12期158-161,共4页
为解决关系国计民生重要行业事后审计的弊端,本文针对PNARC算法在审计数据关联规则挖掘时存在的置信度约束无效、挖掘精度不高等问题,提出了一种最小相关度优化PNARC算法的审计数据关联规则挖掘模型。首先对置信度进行阈值双重优化,以... 为解决关系国计民生重要行业事后审计的弊端,本文针对PNARC算法在审计数据关联规则挖掘时存在的置信度约束无效、挖掘精度不高等问题,提出了一种最小相关度优化PNARC算法的审计数据关联规则挖掘模型。首先对置信度进行阈值双重优化,以提高负关联规则的程度,减少不相关的关联规则,然后对最小相关度进行概率分析,降低无关规则的产生几率。仿真实验结果表明,无论在挖掘精度还是算法运行时间上,都具有比PNARC算法更优异的性能。 展开更多
关键词 审计数据挖掘 PNARC算法优化 最小相关 双重置信 置信度约束
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部