期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
置信度网络在判别分析中的应用 被引量:1
1
作者 应海 杨梵原 +3 位作者 王小如 朱尔一 黄本立 刘际明 《计算机与应用化学》 CAS CSCD 1997年第1期60-64,74,共6页
本文叙述了置信度网络与偏最小二乘法(PLS)联用方法的建立,利用置信度网络处理信息的不完整性,利用偏最小二乘法建立预报模型,并预报结果.将此方法运用于实际,根据原子光谱法测定人发中微量元素的浓度值,识别癌症病人,获得较... 本文叙述了置信度网络与偏最小二乘法(PLS)联用方法的建立,利用置信度网络处理信息的不完整性,利用偏最小二乘法建立预报模型,并预报结果.将此方法运用于实际,根据原子光谱法测定人发中微量元素的浓度值,识别癌症病人,获得较好效果,当元素浓度值78%时,就能获得100%元素浓度值的预报结果。 展开更多
关键词 置信度网络 偏最小二乘法 癌症 判别分析 诊断
原文传递
模糊贝叶斯置信度递进神经网络法检测药品不良反应报告信号
2
作者 刘靖 叶国菊 +6 位作者 王启明 刘尉 赵大方 孙骏 李国亮 王新敏 李明 《中国药物警戒》 2022年第10期1113-1117,共5页
目的充分挖掘药品不良反应报告,实现药品不良反应信号检测,为信号验证和临床用药工作提供参考。方法引入模糊数对药品不良反应报告中的模糊语义信息进行量化,构建模糊贝叶斯置信度递进神经网络(FBCPNN)法,与贝叶斯置信度递进神经网络(BC... 目的充分挖掘药品不良反应报告,实现药品不良反应信号检测,为信号验证和临床用药工作提供参考。方法引入模糊数对药品不良反应报告中的模糊语义信息进行量化,构建模糊贝叶斯置信度递进神经网络(FBCPNN)法,与贝叶斯置信度递进神经网络(BCPNN)法进行对比分析一致性,并分析复方骨肽的信号检测结果。结果对江苏省药品不良反应监测中心提供的2014年1月1日至2019年12月31日药品不良反应报告进行信号检测,FBCPNN法检测到11454个信号,其中新的(说明书中未出现)信号共534个,BCPNN法检测到10915个信号,其中新的信号545个。FBCPNN与BCPNN法相比较,灵敏度为0.9103,特异度为0.9766,约登指数为0.8869。结论基于不确定信息的FBCPNN法可充分利用药品不良反应报告的不确定信息,有效地实现不良反应信号检测。 展开更多
关键词 药品不良反应 信号检测 模糊数 语言变量 贝叶斯置信递进神经网络
下载PDF
深度学习下的校园监控网络欺骗攻击检测算法
3
作者 钱鑫 《吉林大学学报(信息科学版)》 CAS 2023年第4期752-758,共7页
针对网络欺骗攻击检测过程中易受信号强度、监控配置和路由器性能等干扰问题,提出了基于深度学习算法的校园监控网络欺骗攻击检测方法。利用深度学习网络中的自编码器对校园监控网络流量数据进行降维处理,使用自编码器构成的栈示编码器... 针对网络欺骗攻击检测过程中易受信号强度、监控配置和路由器性能等干扰问题,提出了基于深度学习算法的校园监控网络欺骗攻击检测方法。利用深度学习网络中的自编码器对校园监控网络流量数据进行降维处理,使用自编码器构成的栈示编码器对降维后的流量数据实行特征提取,并将提取的特征输入置信度神经网络中,根据输出的置信度数值与固定阈值相比较判断网络欺骗攻击的类型,完成校园监控网络欺骗攻击的检测。实验结果表明,该方法的检测时间短、检出率高、误报率低。 展开更多
关键词 自编码器 栈示编码器 特征提取 置信神经网络 置信损失函数
下载PDF
基于深度学习的并行负荷预测方法 被引量:3
4
作者 卢杏坚 高小征 《自动化与信息工程》 2017年第4期26-30,共5页
针对传统电力负荷预测算法存在模型训练速度慢、预测效果差等问题,提出基于深度学习的并行负荷预测方法。该方法基于MapReduce并行计算框架,结合深度信念网络模型,以历史负荷信息与天气信息为样本数据进行并行化训练,并通过训练模型预... 针对传统电力负荷预测算法存在模型训练速度慢、预测效果差等问题,提出基于深度学习的并行负荷预测方法。该方法基于MapReduce并行计算框架,结合深度信念网络模型,以历史负荷信息与天气信息为样本数据进行并行化训练,并通过训练模型预测负荷值。经实验验证,本文的预测方法预测的电力负荷值与实际值的平均均方根误差为2.86%,预测精度高于传统方法,且有效减少了训练与预测时间,能适应大规模电力数据的预测要求。 展开更多
关键词 负荷预测 学习 并行计算 置信度网络 无监督学习
下载PDF
基于美国FAERS数据库的达比加群酯不良反应信号挖掘研究 被引量:2
5
作者 曾露 王璐 魏安华 《药品评价》 CAS 2023年第5期607-611,共5页
目的挖掘达比加群酯的药品不良反应(ADR)信号,为其临床使用安全性提供参考依据。方法基于美国食品药品监督管理局(FDA)不良事件报告系统(FAERS),联合报告比值比法(ROR)、比例报告比值法(PRR)、综合标准法(MHRA)和贝叶斯置信度递进神经... 目的挖掘达比加群酯的药品不良反应(ADR)信号,为其临床使用安全性提供参考依据。方法基于美国食品药品监督管理局(FDA)不良事件报告系统(FAERS),联合报告比值比法(ROR)、比例报告比值法(PRR)、综合标准法(MHRA)和贝叶斯置信度递进神经网络法(BCPNN)对FAERS中2010年10月至2022年12月上报的达比加群酯ADR报告进行数据挖掘,分析相关ADR信号分布及信号强度,并深入分析不同部位出血相关ADR情况。结果共筛选出达比加群酯不良反应例次155881例,ADR信号783个,映射到27个系统器官,最多的系统器官为胃肠系统,排名前三的强信号分别为胃肠出血、脑血管意外和出血。药品说明书未收载的ADR包括有脑血管意外、跌倒、缺血性脑卒中、急性肾损伤、房颤等。同时得到出血相关ADR数31669例,以胃肠系统,神经系统、血管和淋巴系统等出血为主。结论达比加群酯在临床使用过程中应重点关注出血相关ADR,尤其是胃肠出血,同时应警惕说明书中未记录的ADR,并做好相关事件的应对措施。 展开更多
关键词 达比加群酯 药物相关性副作用和不良反应 药物不良反应报告系统 比例失衡法 综合标准法 贝叶斯置信递进神经网络
下载PDF
Prediction Model of Aircraft Icing Based on Deep Neural Network 被引量:12
6
作者 YI Xian WANG Qiang +1 位作者 CHAI Congcong GUO Lei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期535-544,共10页
Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed un... Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed under different icing conditions.Due to the complexity of the icing process,the rapid assessment of ice shape remains an important challenge.In this paper,an efficient prediction model of aircraft icing is established based on the deep belief network(DBN)and the stacked auto-encoder(SAE),which are all deep neural networks.The detailed network structures are designed and then the networks are trained according to the samples obtained by the icing numerical computation.After that the model is applied on the ice shape evaluation of NACA0012 airfoil.The results show that the model can accurately capture the nonlinear behavior of aircraft icing and thus make an excellent ice shape prediction.The model provides an important tool for aircraft icing analysis. 展开更多
关键词 aircraft icing ice shape prediction deep neural network deep belief network stacked auto-encoder
下载PDF
Nonlinear inversion for magnetotelluric sounding based on deep belief network 被引量:8
7
作者 WANG He LIU Wei XI Zhen-zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2482-2494,共13页
To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network ... To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network inputs are the apparent resistivities of known models,and the outputs are the model parameters.The optimal network structure is achieved by determining the numbers of hidden layers and network nodes.Secondly,the learning process of the DBN is implemented to obtain the optimal solution of network connection weights for known geoelectric models.Finally,the trained DBN is verified through inversion tests,in which the network inputs are the apparent resistivities of unknown models,and the outputs are the corresponding model parameters.The experiment results show that the DBN can make full use of the global searching capability of the restricted Boltzmann machine(RBM)unsupervised learning and the local optimization of the back propagation(BP)neural network supervised learning.Comparing to the traditional neural network inversion,the calculation accuracy and stability of the DBN for MT data inversion are improved significantly.And the tests on synthetic data reveal that this method can be applied to MT data inversion and achieve good results compared with the least-square regularization inversion. 展开更多
关键词 MAGNETOTELLURICS nonlinear inversion deep learning deep belief network
下载PDF
Finite-sensor fault-diagnosis simulation study of gas turbine engine using information entropy and deep belief networks 被引量:6
8
作者 De-long FENG Ming-qing XIAO +3 位作者 Ying-xi LIU Hai-fang SONG Zhao YANG Ze-wen HU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第12期1287-1304,共18页
Precise fault diagnosis is an important part of prognostics and health management. It can avoid accidents, extend the service life of the machine, and also reduce maintenance costs. For gas turbine engine fault diagno... Precise fault diagnosis is an important part of prognostics and health management. It can avoid accidents, extend the service life of the machine, and also reduce maintenance costs. For gas turbine engine fault diagnosis, we cannot install too many sensors in the engine because the operating environment of the engine is harsh and the sensors will not work in high temperature, at high rotation speed, or under high pressure. Thus, there is not enough sensory data from the working engine to diagnose potential failures using existing approaches. In this paper, we consider the problem of engine fault diagnosis using finite sensory data under complicated circumstances, and propose deep belief networks based on information entropy, IE-DBNs, for engine fault diagnosis. We first introduce several information entropies and propose joint complexity entropy based on single signal entropy. Second, the deep belief networks (DBNs) is analyzed and a logistic regression layer is added to the output of the DBNs. Then, information entropy is used in fault diagnosis and as the input for the DBNs. Comparison between the proposed IE-DBNs method and state-of-the-art machine learning approaches shows that the IE-DBNs method achieves higher accuracy. 展开更多
关键词 Deep belief networks (DBNs) Fault diagnosis Information entropy ENGINE
原文传递
Tandem hidden Markov models using deep belief networks for offline handwriting recognition 被引量:2
9
作者 Partha Pratim ROY Guoqiang ZHONG Mohamed CHERIET 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第7期978-988,共11页
Unconstrained offiine handwriting recognition is a challenging task in the areas of document analysis and pattern recognition. In recent years, to sufficiently exploit the supervisory information hidden in document im... Unconstrained offiine handwriting recognition is a challenging task in the areas of document analysis and pattern recognition. In recent years, to sufficiently exploit the supervisory information hidden in document images, much effort has been made to integrate multi-layer perceptrons (MLPs) in either a hybrid or a tandem fashion into hidden Markov models (HMMs). However, due to the weak learnability of MLPs, the learnt features are not necessarily optimal for subsequent recognition tasks. In this paper, we propose a deep architecture-based tandem approach for unconstrained offiine handwriting recognition. In the proposed model, deep belief networks arc adopted to learn the compact representations of sequential data, while HMMs are applied for (sub-)word recognition. We evaluate the proposed model on two publicly available datasets, i.e., RIMES and IFN/ENIT, which are based on Latin and Arabic languages respectively, and one dataset collected by ourselves called Devanagari (all Indian script). Extensive experiments show the advantage of the proposed model, especially over the MLP-HMMs taudem approaches. 展开更多
关键词 Handwriting recognition Hidden Markov models Deep learning Deep belief networks Tandemapproach
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部