Based on a differentiable merit function proposed by Taji et al. in "Math. Prog. Stud., 58, 1993, 369-383", the authors propose an affine scaling interior trust region strategy via optimal path to modify Newton meth...Based on a differentiable merit function proposed by Taji et al. in "Math. Prog. Stud., 58, 1993, 369-383", the authors propose an affine scaling interior trust region strategy via optimal path to modify Newton method for the strictly monotone variational inequality problem subject to linear equality and inequality constraints. By using the eigensystem decomposition and affine scaling mapping, the authors form an affine scaling optimal curvilinear path very easily in order to approximately solve the trust region subproblem. Theoretical analysis is given which shows that the proposed algorithm is globally convergent and has a local quadratic convergence rate under some reasonable conditions.展开更多
基金the National Natural Science Foundation of China(No.10471094)the Doctoral Programmer Foundation of the Ministry of Education of China(No.0527003)+1 种基金the Shanghai Leading Academic Discipline Project(No.T0401)and the Science Foundation Grant of Shanghai Municipal Education Committee(Nos.05DZ11,06A110).
文摘Based on a differentiable merit function proposed by Taji et al. in "Math. Prog. Stud., 58, 1993, 369-383", the authors propose an affine scaling interior trust region strategy via optimal path to modify Newton method for the strictly monotone variational inequality problem subject to linear equality and inequality constraints. By using the eigensystem decomposition and affine scaling mapping, the authors form an affine scaling optimal curvilinear path very easily in order to approximately solve the trust region subproblem. Theoretical analysis is given which shows that the proposed algorithm is globally convergent and has a local quadratic convergence rate under some reasonable conditions.