期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于二次迭代Monte Carlo的羊肉硬度定量检测研究
1
作者
白雪冰
李鑫星
+2 位作者
张小栓
罗海玲
傅泽田
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2021年第7期2057-2063,共7页
随着居民生活水平的提高和对健康饮食结构的重视,羊肉作为一种高蛋白且低脂肪和胆固醇的畜肉,需求量逐年上涨。根据国家统计局统计,2012年—2019年我国畜肉产业中羊肉产量占比从6.27%上升到9.02%。研究提出了一种基于二次迭代Monte Carl...
随着居民生活水平的提高和对健康饮食结构的重视,羊肉作为一种高蛋白且低脂肪和胆固醇的畜肉,需求量逐年上涨。根据国家统计局统计,2012年—2019年我国畜肉产业中羊肉产量占比从6.27%上升到9.02%。研究提出了一种基于二次迭代Monte Carlo(MC)算法剔除异常样本的羊肉硬度定量检测PLSR模型。采用GaiaSorter高光谱分选仪的Image-λ-V10E-H相机采集羊肉样品400~950 nm的高光谱数据,Image-λ-N17E相机采集羊肉样品900~1650 nm的高光谱数据。首先,对比分析了S-G平滑、二阶求导、多元散射校正(MSC)、标准正态变换(SNV)等光谱预处理方法在消除噪声影响,提高光谱分别率等方面的能力,选取最佳光谱预处理方法。然后,在第一次MC抽样中,计算所有样本预测误差均值和标准差的平均值,以该平均值的2.5~3倍作为可疑样本阈值,3倍作为异常样本阈值;剔除异常样本,保留并标注可疑样本,进行第二次MC抽样,以样本预测误差均值和标准差的3倍值为阈值进行异常样本二次剔除;对第一次MC抽样中标注可疑样本进行二次检测。最后,对比分析了基于全波长建立的偏最小二乘回归(PLSR)模型和基于回归系数法(RC)提取的特征波长建立的PLSR模型。研究结果表明,所提出的二次迭MC算法可以准确判别可疑样本是否为异常样本,有效优化样本集,为建模提供良好的数据基础。以MSC作为光谱预处理算法基于400~950和900~1650 nm两段高光谱数据建立PLSR模型的R^(2)_(P)分别为0.9472和0.9783,RMSE P分别为47.7899和30.5901 g,优于其他三种光谱预处理算法。另外,基于900~1650 nm建立的PLSR模型明显优于基于400~950 nm波长样本集建立的模型。通过RC算法选取出羊肉硬度在400~950和900~1650 nm波长范围的特征波长分别为14个(410,438,450,464,539,558,612,684,701,734,778,866,884和935 nm)和10个(915,949,1085,1156,1206,1262,1318,1384,1542和1580 nm)。其中,基于900~1650 nm波长建立的PLSR模型的R^(2)_(P)为0.9850,RMSE P为24.3970 g,为羊肉硬度预测的最佳模型。结果表明,所提出的融合二次迭代MC算法的PLSR模型可以有效预测羊肉冷藏过程中硬度特性变化趋势,为羊肉品质无损检测相关研究提供参考。
展开更多
关键词
可见-近红外光谱
二次迭代Monte
Carlo
偏最小二乘回归模型
羊肉硬度
下载PDF
职称材料
题名
基于二次迭代Monte Carlo的羊肉硬度定量检测研究
1
作者
白雪冰
李鑫星
张小栓
罗海玲
傅泽田
机构
中国农业大学信息与电气工程学院食品质量与安全北京实验室
中国农业大学工学院
中国农业大学动物科学技术学院动物营养国家重点实验室
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2021年第7期2057-2063,共7页
基金
国家肉羊产业技术体系(CARS-38)资助。
文摘
随着居民生活水平的提高和对健康饮食结构的重视,羊肉作为一种高蛋白且低脂肪和胆固醇的畜肉,需求量逐年上涨。根据国家统计局统计,2012年—2019年我国畜肉产业中羊肉产量占比从6.27%上升到9.02%。研究提出了一种基于二次迭代Monte Carlo(MC)算法剔除异常样本的羊肉硬度定量检测PLSR模型。采用GaiaSorter高光谱分选仪的Image-λ-V10E-H相机采集羊肉样品400~950 nm的高光谱数据,Image-λ-N17E相机采集羊肉样品900~1650 nm的高光谱数据。首先,对比分析了S-G平滑、二阶求导、多元散射校正(MSC)、标准正态变换(SNV)等光谱预处理方法在消除噪声影响,提高光谱分别率等方面的能力,选取最佳光谱预处理方法。然后,在第一次MC抽样中,计算所有样本预测误差均值和标准差的平均值,以该平均值的2.5~3倍作为可疑样本阈值,3倍作为异常样本阈值;剔除异常样本,保留并标注可疑样本,进行第二次MC抽样,以样本预测误差均值和标准差的3倍值为阈值进行异常样本二次剔除;对第一次MC抽样中标注可疑样本进行二次检测。最后,对比分析了基于全波长建立的偏最小二乘回归(PLSR)模型和基于回归系数法(RC)提取的特征波长建立的PLSR模型。研究结果表明,所提出的二次迭MC算法可以准确判别可疑样本是否为异常样本,有效优化样本集,为建模提供良好的数据基础。以MSC作为光谱预处理算法基于400~950和900~1650 nm两段高光谱数据建立PLSR模型的R^(2)_(P)分别为0.9472和0.9783,RMSE P分别为47.7899和30.5901 g,优于其他三种光谱预处理算法。另外,基于900~1650 nm建立的PLSR模型明显优于基于400~950 nm波长样本集建立的模型。通过RC算法选取出羊肉硬度在400~950和900~1650 nm波长范围的特征波长分别为14个(410,438,450,464,539,558,612,684,701,734,778,866,884和935 nm)和10个(915,949,1085,1156,1206,1262,1318,1384,1542和1580 nm)。其中,基于900~1650 nm波长建立的PLSR模型的R^(2)_(P)为0.9850,RMSE P为24.3970 g,为羊肉硬度预测的最佳模型。结果表明,所提出的融合二次迭代MC算法的PLSR模型可以有效预测羊肉冷藏过程中硬度特性变化趋势,为羊肉品质无损检测相关研究提供参考。
关键词
可见-近红外光谱
二次迭代Monte
Carlo
偏最小二乘回归模型
羊肉硬度
Keywords
Visible-near infrared spectroscopy
Twice iterative Monte Carlo
PLSR
Mutton hardness
分类号
O433.4 [机械工程—光学工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于二次迭代Monte Carlo的羊肉硬度定量检测研究
白雪冰
李鑫星
张小栓
罗海玲
傅泽田
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2021
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部