主要研究了一类状态转换下美式跳扩散期权定价模型的修正Crank-Nicolson拟合有限体积法并且给出收敛性分析.文章所构造的新方法是对[Gan X T,Yin J F,Li R,Fitted finite volume method for pricing American options under regime-swit...主要研究了一类状态转换下美式跳扩散期权定价模型的修正Crank-Nicolson拟合有限体积法并且给出收敛性分析.文章所构造的新方法是对[Gan X T,Yin J F,Li R,Fitted finite volume method for pricing American options under regime-switching.jump-diffusion models based on penalty method.Adv.Appl.Math.Mech.,2020,12(3):748-773]中时间方向上Crank-Nicolson格式的改进.同时,还对求解非线性系统迭代方法的收敛性证明进行了补充.最后,数值实验验证了新方法的有效性.展开更多
文摘主要研究了一类状态转换下美式跳扩散期权定价模型的修正Crank-Nicolson拟合有限体积法并且给出收敛性分析.文章所构造的新方法是对[Gan X T,Yin J F,Li R,Fitted finite volume method for pricing American options under regime-switching.jump-diffusion models based on penalty method.Adv.Appl.Math.Mech.,2020,12(3):748-773]中时间方向上Crank-Nicolson格式的改进.同时,还对求解非线性系统迭代方法的收敛性证明进行了补充.最后,数值实验验证了新方法的有效性.