Aim To synthesize the tripepide Weinreb amide Boc Asp(OBzl) β Ala Asp(OBzl) N(OMe)Me (7) as a useful precursor of aspartyl peptide aldehyde derivatives; Methods DCC, IBCF method was used for preparation of ...Aim To synthesize the tripepide Weinreb amide Boc Asp(OBzl) β Ala Asp(OBzl) N(OMe)Me (7) as a useful precursor of aspartyl peptide aldehyde derivatives; Methods DCC, IBCF method was used for preparation of Weinreb amide; N hydroxysuccinimide activated ester was used in peptide synthesis; and Boc as N protecting group of amino acid. Results Boc Asp(OBzl) N(OMe)Me (3), Boc β Ala Asp(OBzl) N(OMe)Me (5), and Boc Asp(OBzl) β Ala Asp(OBzl) N(OMe)Me (7) were synthesized successfully. Conclusion An useful precursor of tripeptide aspartyl aldehydes was synthesized.展开更多
Selective oxidation with molecular oxygen as the sole oxidant under mild conditions is of crucialimportance for the long‐term sustainable exploitation of available feedstocks and the formation ofrequired intermediate...Selective oxidation with molecular oxygen as the sole oxidant under mild conditions is of crucialimportance for the long‐term sustainable exploitation of available feedstocks and the formation ofrequired intermediates for organic synthesis and industrial processes.Among the developed oxidationprotocols,innovative strategies using hydroxyimide organocatalysts in combination with metallicor metal‐free cocatalysts have attracted much attention because of the good activities andselectivities of such catalysts in the oxo functionalization of hydrocarbons.This method is based onthe reaction using N‐hydroxyphthalimide,which was first reported by Ishii’s group in the1990s.Although the important and wide‐ranging applications of such catalysts have been summarizedrecently,there are no reviews that focus solely on oxidation strategies using multi‐nitroxy organocatalysts,which have interesting properties and high reactivities.This review covers the concisesynthetic methods and mechanistic profiles of known multi‐nitroxy organocatalysts and summarizessignificant advances in their use in efficient aerobic oxidation.Based on a combination of experimentaland theoretical results,guidelines for the future rational design of multi‐nitroxy organocatalystsare proposed,and the properties of various model multi‐nitroxy organocatalysts are predicted.The present overview of the advantages,limitations,and potential applications of multi‐nitroxyorganocatalysts can provide useful tools for researchers in the field of selective oxidation.展开更多
The catalytic performance of a series of cobalt(Ⅱ) hydroxamates (CoL2) and the synergistic catalytic action of the cobalt complexes combined with N-hydroxyphthalimide (NHPI) in the aerobic oxidation of p-xylene to p-...The catalytic performance of a series of cobalt(Ⅱ) hydroxamates (CoL2) and the synergistic catalytic action of the cobalt complexes combined with N-hydroxyphthalimide (NHPI) in the aerobic oxidation of p-xylene to p-toluic acid (PTA) were investigated. The results showed that the existing synergistic action in the catalytic oxidation can shorten the induction period of the radical reaction and improve the yield of PTA.展开更多
文摘Aim To synthesize the tripepide Weinreb amide Boc Asp(OBzl) β Ala Asp(OBzl) N(OMe)Me (7) as a useful precursor of aspartyl peptide aldehyde derivatives; Methods DCC, IBCF method was used for preparation of Weinreb amide; N hydroxysuccinimide activated ester was used in peptide synthesis; and Boc as N protecting group of amino acid. Results Boc Asp(OBzl) N(OMe)Me (3), Boc β Ala Asp(OBzl) N(OMe)Me (5), and Boc Asp(OBzl) β Ala Asp(OBzl) N(OMe)Me (7) were synthesized successfully. Conclusion An useful precursor of tripeptide aspartyl aldehydes was synthesized.
基金supported by the China Postdoctoral Science Foundation (2014M551746)~~
文摘Selective oxidation with molecular oxygen as the sole oxidant under mild conditions is of crucialimportance for the long‐term sustainable exploitation of available feedstocks and the formation ofrequired intermediates for organic synthesis and industrial processes.Among the developed oxidationprotocols,innovative strategies using hydroxyimide organocatalysts in combination with metallicor metal‐free cocatalysts have attracted much attention because of the good activities andselectivities of such catalysts in the oxo functionalization of hydrocarbons.This method is based onthe reaction using N‐hydroxyphthalimide,which was first reported by Ishii’s group in the1990s.Although the important and wide‐ranging applications of such catalysts have been summarizedrecently,there are no reviews that focus solely on oxidation strategies using multi‐nitroxy organocatalysts,which have interesting properties and high reactivities.This review covers the concisesynthetic methods and mechanistic profiles of known multi‐nitroxy organocatalysts and summarizessignificant advances in their use in efficient aerobic oxidation.Based on a combination of experimentaland theoretical results,guidelines for the future rational design of multi‐nitroxy organocatalystsare proposed,and the properties of various model multi‐nitroxy organocatalysts are predicted.The present overview of the advantages,limitations,and potential applications of multi‐nitroxyorganocatalysts can provide useful tools for researchers in the field of selective oxidation.
基金supported by the National Natural Science Foundation of China(Grant No.20072025).
文摘The catalytic performance of a series of cobalt(Ⅱ) hydroxamates (CoL2) and the synergistic catalytic action of the cobalt complexes combined with N-hydroxyphthalimide (NHPI) in the aerobic oxidation of p-xylene to p-toluic acid (PTA) were investigated. The results showed that the existing synergistic action in the catalytic oxidation can shorten the induction period of the radical reaction and improve the yield of PTA.