Imidazole base was crystallized with different aromatic carboxylic acids 2,4-dihydroxybenzoic acid, 5-chlorosalicylic acid, and 1,8-naphthalic acid, affording three new binary molecular organic salts of [(C 3 H 5 N 2 ...Imidazole base was crystallized with different aromatic carboxylic acids 2,4-dihydroxybenzoic acid, 5-chlorosalicylic acid, and 1,8-naphthalic acid, affording three new binary molecular organic salts of [(C 3 H 5 N 2 + )·(C 7 H 5 O 4 )] (1), [(C 3 H 5 N 2 + )·(C 7 H 4 O 3 Cl )] C 7 H 5 O 3 Cl (2), and [(C 3 H 5 N 2 + ) (C 12 H 7 O 4 )] (3). Proton transfer occurs from the COOH of carboxylic acid to nitrogen of imidazole in all complexes (1-3), leading to the hydrogen bond N-H…O in all structures. To our knowledge, the recognition pattern between the carboxylic acid group and imidazole (acid-imidazole synthon) is less well-studied so far. The cooperation among COOH, COO and imidazolium cation functional groups for the observed hydrogen bond synthons is examined in the three structures. Generally, the strong N-H…O and O-H…O hydrogen bonds define supramolecular architecture and connectivity within chains, while weaker C-H…O hydrogen bonds play the dominant role in controlling the interactions between layers in these novel organic salts. Thermal stability of these compounds has been investigated by thermogravimetric analysis (TGA) of mass loss.展开更多
Multifunctional molecules are capable of assembling via different supramolecular synthons, or hydrogen bond motifs, between the same or different functional groups, leading to the possibility of cocrystal. Utilization...Multifunctional molecules are capable of assembling via different supramolecular synthons, or hydrogen bond motifs, between the same or different functional groups, leading to the possibility of cocrystal. Utilization of the interplay of dimensionality (I-D, 2-D and 3-D), orientation of functional groups of the building blocks, influence of rigid/flexible linking groups, and weak interactions provides an interesting route for the creation of novel supramolecular architectures in the crystal lattice. N-unsubstituted 1H-benzotriazole and carboxylic acid, being self-complementary molecules, offer a broad scope of study of binary compounds based on the complementary combination of H-bonding/donating sites. We report here the construction of three extended molecular networks in cocrystals of the carboxylic acid group of the acid and the 1H-benzotriazole triazole moiety. We have been able to identify four major supramolecualr synthons that would be helpful in the prediction of structural motifs for these kinds of studies. Interestingly, these heterosynthons are strikingly similar, to those of the homosynthons of the individual functional groups. The nature of the aza groups helps to enhance the overall volume of the crystal lattice thus lead- ing to the formation of various supramolecular assemblies. Thermal stability of these compounds has been investigated by thermogravimetric analysis (TGA) of mass loss.展开更多
基金supported by the National Natural Science Foundation of China (20701023, 20971076)the Natural Science Foundation of Shandong Province, China (BS2010NJ004,2009ZRB019KH)
文摘Imidazole base was crystallized with different aromatic carboxylic acids 2,4-dihydroxybenzoic acid, 5-chlorosalicylic acid, and 1,8-naphthalic acid, affording three new binary molecular organic salts of [(C 3 H 5 N 2 + )·(C 7 H 5 O 4 )] (1), [(C 3 H 5 N 2 + )·(C 7 H 4 O 3 Cl )] C 7 H 5 O 3 Cl (2), and [(C 3 H 5 N 2 + ) (C 12 H 7 O 4 )] (3). Proton transfer occurs from the COOH of carboxylic acid to nitrogen of imidazole in all complexes (1-3), leading to the hydrogen bond N-H…O in all structures. To our knowledge, the recognition pattern between the carboxylic acid group and imidazole (acid-imidazole synthon) is less well-studied so far. The cooperation among COOH, COO and imidazolium cation functional groups for the observed hydrogen bond synthons is examined in the three structures. Generally, the strong N-H…O and O-H…O hydrogen bonds define supramolecular architecture and connectivity within chains, while weaker C-H…O hydrogen bonds play the dominant role in controlling the interactions between layers in these novel organic salts. Thermal stability of these compounds has been investigated by thermogravimetric analysis (TGA) of mass loss.
基金supported by the National Natural Science Foundation of China (20701023 and 20971076)the Natural Science Foundation of Shandong Province,China (BS2010CL013 and2009ZRB019KH)
文摘Multifunctional molecules are capable of assembling via different supramolecular synthons, or hydrogen bond motifs, between the same or different functional groups, leading to the possibility of cocrystal. Utilization of the interplay of dimensionality (I-D, 2-D and 3-D), orientation of functional groups of the building blocks, influence of rigid/flexible linking groups, and weak interactions provides an interesting route for the creation of novel supramolecular architectures in the crystal lattice. N-unsubstituted 1H-benzotriazole and carboxylic acid, being self-complementary molecules, offer a broad scope of study of binary compounds based on the complementary combination of H-bonding/donating sites. We report here the construction of three extended molecular networks in cocrystals of the carboxylic acid group of the acid and the 1H-benzotriazole triazole moiety. We have been able to identify four major supramolecualr synthons that would be helpful in the prediction of structural motifs for these kinds of studies. Interestingly, these heterosynthons are strikingly similar, to those of the homosynthons of the individual functional groups. The nature of the aza groups helps to enhance the overall volume of the crystal lattice thus lead- ing to the formation of various supramolecular assemblies. Thermal stability of these compounds has been investigated by thermogravimetric analysis (TGA) of mass loss.