As the most abundant source of biomass in nature for sustainable production of fuels and chemicals,efficient depolymerization of cellulose under mild conditions,due to the difficulty in selective cleavage of itsβ-1,4...As the most abundant source of biomass in nature for sustainable production of fuels and chemicals,efficient depolymerization of cellulose under mild conditions,due to the difficulty in selective cleavage of itsβ-1,4-glycosidic bonds,still remains challenging.Here,we report a novel method for oxidative cleavage of the glycosidic bonds by free radicals.Probed by the cellobiose reaction,it was found that·OH radicals,generated from the decomposition of H2O2 catalyzed by CuSO4 or CuO/SiO2,were efficient for selective conversion of cellobiose to glucose and gluconic acid at a low temperature of 333 K,and their selectivities reached 30.0%and 34.6%,respectively,at 23.4%cellobiose conversion.Other radicals,such as·SO4?,also exhibited high efficacy in the cellobiose reaction.Mechanistic studies suggest that the oxidative cleavage of theβ-1,4-glycosidic bond by the free radicals involve formation of the carbon radical intermediate via abstraction of the H atom dominantly at the C1 position.Following this oxidative mechanism,treatment of microcrystalline cellulose with·OH by impregnation with H2O2 and CuSO4 catalyst at 343 K led to significant enhancement in its hydrolysis efficiency.These results demonstrate the effectiveness of this new method in the oxidative cleavage of glycosidic bonds,and its viability for the efficient depolymerization of cellulose at low temperatures,which can be further improved,for example,by exploring new free radicals and optimizing their reactivity and selectivity.展开更多
A novel‐structured Mo‐Cu‐Fe‐O composite was successfully prepared by co‐precipitation and impregnation method.The properties of the as‐prepared samples were determined using X‐ray diffraction,temperature‐progr...A novel‐structured Mo‐Cu‐Fe‐O composite was successfully prepared by co‐precipitation and impregnation method.The properties of the as‐prepared samples were determined using X‐ray diffraction,temperature‐programmed reduction by H2,cyclic voltammetry,and temperature‐programmed desorption by O2.The results showed that Mo6+diffused into the Cu‐Fe‐O crystal lattice and then formed a new crystalline phase of CuMoO4.The Mo‐Cu‐Fe‐O catalyst had redox properties,and its surface contained active sites for oxygen adsorption.In addition,the catalytic activity of the Mo‐Cu‐Fe‐O composite was evaluated by the degradation of Cationic Red GTL,Crystal Violet,and Acid Red in catalytic wet air oxidation(CWAO)at ambient temperature and pressure.The Mo‐Cu‐Fe‐O catalyst showed excellent activity at basic conditions for the degradation of Cationic Red GTL.High removal efficiencies of91.5%and92.8%were achieved for Cationic Red GTL and Crystal Violet,respectively,in wastewater,and the efficiency remained high after seven cycles.However,almost no degradation of Acid Red occurred in the CWAO process.Furthermore,hydroxyl radicals were formed in the CWAO process,which induced the decomposition of the two cationic dyes in wastewater,and the toxicity of their effluents was decreased after degradation.The results indicate that the Mo‐Cu‐Fe‐O composite shows excellent catalytic activity for the treatment of wastewater contaminated with cationic dyes.展开更多
In recent years,there have been numerous studies on Fenton or Fenton-like reactions mediated by nonfree radicals such as singlet oxygen(1O_(2));however,there are few studies on the synergistic effect of 1O_(2) and fre...In recent years,there have been numerous studies on Fenton or Fenton-like reactions mediated by nonfree radicals such as singlet oxygen(1O_(2));however,there are few studies on the synergistic effect of 1O_(2) and free radicals on the degradation of organic molecules,such as phenol in Fenton reaction.In this study,a cocatalyst,CoP,commonly used in photocatalysis was synthesized using a simple two-step method,and a CoP/Fe^(2+)/AM1.5 system was constructed by introducing Fe^(2+)and simulated sunlight(AM1.5)irradiation.The newly constructed CoP/Fe^(2+)/AM1.5 system could effectively degrade various organic pollutants,including dyes,phenols,and antibiotics.Radical quenching experiments and electron paramagnetic resonance detection confirmed that there were three reactive oxygen species(ROS)in the CoP/Fe^(2+)/AM1.5 system,including·OH_(ads),·O_(2)^(-),and 1O_(2).Further,combined with the liquid chromatogram of phenol,its intermediate products,and the fluorescence diagram of o-hydroxybenzoic acid,it can be concluded that a synergistic effect exists between 1O_(2) and the surface-adsorbed·OH_(ads) in the CoP/Fe^(2+)/AM1.5 system.The controllable formation of surface 1O_(2) and·OH_(ads) was achieved through the oxidation(Co^(3+))and reduction(Pδ−)centers exposed on the CoP surface,and the synergistic effect between them results in phenol’s hydroxylation,ring-opening,and degradation.The study of this new mechanism provides a new perspective for revealing the surface interface reaction between ROS and organic pollutants.展开更多
In this paper, saponins were extracted from Northern Shaanxi' s big jujubes using organic solvent method and also the oxidation resistance of the extractives was analyzed. In the experiment, the crude extractives of ...In this paper, saponins were extracted from Northern Shaanxi' s big jujubes using organic solvent method and also the oxidation resistance of the extractives was analyzed. In the experiment, the crude extractives of the saponins from jujubes were obtained using ethyl alcohol soaking method and Soxhlet extraction method and also qualitatively tested using 3 color reactions, and the test result was positive; the oxidation resistance of jujube saponins was analyzed through DPPH, hydroxyl radical scavenging experiment and reducibility measurement, and the results showed that the capability of jujube saponins in DPPH free radical scavenging was enhanced along with the improvement of the to- be-test material concentration, so saponins played a significant role on hydroxyl radical scavenging and possessed certain reducibility. Northern Shaanxi' s big jujubes are rich in saponins and possess excellent antioxidant ability that will be enhanced along with the increase of saponins content. Thus, a basis is provided for the effective extension of the jujube industry chain.展开更多
In this study, the ethanol extract of pomegranate seed was prepared and its antioxidant activities were investigated. It was found the total phenolic content in the extract was as high as 41.791 mg GAE/g. And the extr...In this study, the ethanol extract of pomegranate seed was prepared and its antioxidant activities were investigated. It was found the total phenolic content in the extract was as high as 41.791 mg GAE/g. And the extract showed high antioxidant activity measured as scavenging of DPPH radicals, hydroxyl radicals. It also exhibited strong antioxidant activity in reducing power and Rancimat test. These results demonstrated Pomegranate seeds could serve as a new source of natural antioxidant.展开更多
Soot formation was investigated numerically with CO2 addition in a jet-stirred/plug-flow reactor (JSR/PFR) C2H4/OJN2 reactor (C/O ratio of 2.2) at atmospheric pressure. An updated Kazakov mechanism empha- sizes th...Soot formation was investigated numerically with CO2 addition in a jet-stirred/plug-flow reactor (JSR/PFR) C2H4/OJN2 reactor (C/O ratio of 2.2) at atmospheric pressure. An updated Kazakov mechanism empha- sizes the effect of the O2/CO2 atmosphere instead of an O2/N2 one in the premixed flame. The soot formation was taken into account in the JSR/PFR for C2H4/O2/N2. The effects of CO2 addition on soot formation in different C2H4/O2/CO2/N2 atmospheres were studied, with special emphasis on the chemical effect. The simulation shows that the endothermic reaction CO2 + H - CO + OH is responsible of the reduction of hydrocarbon intermediates in the CO2 added combustion through the supplementary formation of hydroxyl radicals. The competition of CO2 for H radical through the above forward reaction with the single most important chain branching reaction H + O2, ' O + OH reduces significantly the fuel burning rate. The chemical effects of CO2 cause a significant increase in residence time and mole fractions of CO and OH, significant decreases in some intermediates (H, C2H2), polycyclic aromatic hydrocarbons (PAHs, C6H6 and CI6H10, etc.) and soot volume fraction. The CO2 addition will leads to a decrease by only about 5% to 20% of the maximum mole fractions of some C3 to Clo hydrocarbon intermediates. The sensitivity analysis and reaction-path analysis results show that C2H4 reaction path and products are altered due to the CO2 addition.展开更多
Multimodal cancer synergistic therapy exhibited remarkable advantages over monotherapy in producing an improved therapeutic efficacy. In this work, Janus-type γ-Fe2 O3/SiO2 nanoparticles(JFSNs) are conjugated with gl...Multimodal cancer synergistic therapy exhibited remarkable advantages over monotherapy in producing an improved therapeutic efficacy. In this work, Janus-type γ-Fe2 O3/SiO2 nanoparticles(JFSNs) are conjugated with glucose oxidase(GOx) for synergistic cancer starvation/chemodynamic therapy. The γ-Fe2O3 hemisphere of JFSNs can perform photoacoustic/T2 magnetic resonance dual-modal imaging of tumors.GOx on the surface of JFSNs catalyzes the decomposition of glucose and produces H2O2 for cancer starvation therapy. Subsequently, the γ-Fe2O3 hemisphere catalyzes the disproportionation of H2O2 to generate highly reactive hydroxyl radicals in an acidic tumor microenvironment. The close distance between GOx and JFSNs ensures adequate contact between the γ-Fe2O3 hemisphere and its substrate H2O2, thus enhancing the catalytic efficiency. This synergy of glucose depletion, biotoxic H2O2 and hydroxyl radicals significantly suppresses 4 T1 mammary tumor growth with minimal adverse effects.展开更多
文摘As the most abundant source of biomass in nature for sustainable production of fuels and chemicals,efficient depolymerization of cellulose under mild conditions,due to the difficulty in selective cleavage of itsβ-1,4-glycosidic bonds,still remains challenging.Here,we report a novel method for oxidative cleavage of the glycosidic bonds by free radicals.Probed by the cellobiose reaction,it was found that·OH radicals,generated from the decomposition of H2O2 catalyzed by CuSO4 or CuO/SiO2,were efficient for selective conversion of cellobiose to glucose and gluconic acid at a low temperature of 333 K,and their selectivities reached 30.0%and 34.6%,respectively,at 23.4%cellobiose conversion.Other radicals,such as·SO4?,also exhibited high efficacy in the cellobiose reaction.Mechanistic studies suggest that the oxidative cleavage of theβ-1,4-glycosidic bond by the free radicals involve formation of the carbon radical intermediate via abstraction of the H atom dominantly at the C1 position.Following this oxidative mechanism,treatment of microcrystalline cellulose with·OH by impregnation with H2O2 and CuSO4 catalyst at 343 K led to significant enhancement in its hydrolysis efficiency.These results demonstrate the effectiveness of this new method in the oxidative cleavage of glycosidic bonds,and its viability for the efficient depolymerization of cellulose at low temperatures,which can be further improved,for example,by exploring new free radicals and optimizing their reactivity and selectivity.
基金supported by the National Natural Science Foundation of China(51678511,51308484)the Natural Science Foundation of Hunan Province(13JJ4049)+3 种基金the Education Department Fund of Hunan Province(14C1094)the Open Fund of Key Laboratory of Mineralogy and Metallogeny in Chinese Academy of Sciences(KLMM20150104)the Major Talent Training Program of Xiangtan University(16PYZ09)the Specialized Research Fund for the Doctoral Program of Xiangtan University(12QDZ18)~~
文摘A novel‐structured Mo‐Cu‐Fe‐O composite was successfully prepared by co‐precipitation and impregnation method.The properties of the as‐prepared samples were determined using X‐ray diffraction,temperature‐programmed reduction by H2,cyclic voltammetry,and temperature‐programmed desorption by O2.The results showed that Mo6+diffused into the Cu‐Fe‐O crystal lattice and then formed a new crystalline phase of CuMoO4.The Mo‐Cu‐Fe‐O catalyst had redox properties,and its surface contained active sites for oxygen adsorption.In addition,the catalytic activity of the Mo‐Cu‐Fe‐O composite was evaluated by the degradation of Cationic Red GTL,Crystal Violet,and Acid Red in catalytic wet air oxidation(CWAO)at ambient temperature and pressure.The Mo‐Cu‐Fe‐O catalyst showed excellent activity at basic conditions for the degradation of Cationic Red GTL.High removal efficiencies of91.5%and92.8%were achieved for Cationic Red GTL and Crystal Violet,respectively,in wastewater,and the efficiency remained high after seven cycles.However,almost no degradation of Acid Red occurred in the CWAO process.Furthermore,hydroxyl radicals were formed in the CWAO process,which induced the decomposition of the two cationic dyes in wastewater,and the toxicity of their effluents was decreased after degradation.The results indicate that the Mo‐Cu‐Fe‐O composite shows excellent catalytic activity for the treatment of wastewater contaminated with cationic dyes.
文摘In recent years,there have been numerous studies on Fenton or Fenton-like reactions mediated by nonfree radicals such as singlet oxygen(1O_(2));however,there are few studies on the synergistic effect of 1O_(2) and free radicals on the degradation of organic molecules,such as phenol in Fenton reaction.In this study,a cocatalyst,CoP,commonly used in photocatalysis was synthesized using a simple two-step method,and a CoP/Fe^(2+)/AM1.5 system was constructed by introducing Fe^(2+)and simulated sunlight(AM1.5)irradiation.The newly constructed CoP/Fe^(2+)/AM1.5 system could effectively degrade various organic pollutants,including dyes,phenols,and antibiotics.Radical quenching experiments and electron paramagnetic resonance detection confirmed that there were three reactive oxygen species(ROS)in the CoP/Fe^(2+)/AM1.5 system,including·OH_(ads),·O_(2)^(-),and 1O_(2).Further,combined with the liquid chromatogram of phenol,its intermediate products,and the fluorescence diagram of o-hydroxybenzoic acid,it can be concluded that a synergistic effect exists between 1O_(2) and the surface-adsorbed·OH_(ads) in the CoP/Fe^(2+)/AM1.5 system.The controllable formation of surface 1O_(2) and·OH_(ads) was achieved through the oxidation(Co^(3+))and reduction(Pδ−)centers exposed on the CoP surface,and the synergistic effect between them results in phenol’s hydroxylation,ring-opening,and degradation.The study of this new mechanism provides a new perspective for revealing the surface interface reaction between ROS and organic pollutants.
文摘In this paper, saponins were extracted from Northern Shaanxi' s big jujubes using organic solvent method and also the oxidation resistance of the extractives was analyzed. In the experiment, the crude extractives of the saponins from jujubes were obtained using ethyl alcohol soaking method and Soxhlet extraction method and also qualitatively tested using 3 color reactions, and the test result was positive; the oxidation resistance of jujube saponins was analyzed through DPPH, hydroxyl radical scavenging experiment and reducibility measurement, and the results showed that the capability of jujube saponins in DPPH free radical scavenging was enhanced along with the improvement of the to- be-test material concentration, so saponins played a significant role on hydroxyl radical scavenging and possessed certain reducibility. Northern Shaanxi' s big jujubes are rich in saponins and possess excellent antioxidant ability that will be enhanced along with the increase of saponins content. Thus, a basis is provided for the effective extension of the jujube industry chain.
基金Supported by Foundation for Science and Technology Research Program of Henanprovince(132102110007102102210194)+1 种基金Natural Science Foundation of EducationDepartment in Henan province(2011A550006)Program for Innovative Research Team(in Science and Technology)in University of Henan Province(13IRTSTHN006)
文摘In this study, the ethanol extract of pomegranate seed was prepared and its antioxidant activities were investigated. It was found the total phenolic content in the extract was as high as 41.791 mg GAE/g. And the extract showed high antioxidant activity measured as scavenging of DPPH radicals, hydroxyl radicals. It also exhibited strong antioxidant activity in reducing power and Rancimat test. These results demonstrated Pomegranate seeds could serve as a new source of natural antioxidant.
基金Supported by the Foundation of State Key Laboratory of Coal Combustion, the National Natural Science Foundation of China (51306022, 51176059) and the Natural Science Foundation of Hubei Province (2013CFB398).
文摘Soot formation was investigated numerically with CO2 addition in a jet-stirred/plug-flow reactor (JSR/PFR) C2H4/OJN2 reactor (C/O ratio of 2.2) at atmospheric pressure. An updated Kazakov mechanism empha- sizes the effect of the O2/CO2 atmosphere instead of an O2/N2 one in the premixed flame. The soot formation was taken into account in the JSR/PFR for C2H4/O2/N2. The effects of CO2 addition on soot formation in different C2H4/O2/CO2/N2 atmospheres were studied, with special emphasis on the chemical effect. The simulation shows that the endothermic reaction CO2 + H - CO + OH is responsible of the reduction of hydrocarbon intermediates in the CO2 added combustion through the supplementary formation of hydroxyl radicals. The competition of CO2 for H radical through the above forward reaction with the single most important chain branching reaction H + O2, ' O + OH reduces significantly the fuel burning rate. The chemical effects of CO2 cause a significant increase in residence time and mole fractions of CO and OH, significant decreases in some intermediates (H, C2H2), polycyclic aromatic hydrocarbons (PAHs, C6H6 and CI6H10, etc.) and soot volume fraction. The CO2 addition will leads to a decrease by only about 5% to 20% of the maximum mole fractions of some C3 to Clo hydrocarbon intermediates. The sensitivity analysis and reaction-path analysis results show that C2H4 reaction path and products are altered due to the CO2 addition.
基金This work was supported by the National Key Research and Development Program of China(2018YFA0704003)the Basic Research Program of Shenzhen(JCYJ20180305163452667,JCYJ20180507182413022,and JCYJ20170412111100742)+3 种基金the National Natural Science Foundation of China(81903564,31771036,51703132,and 21874119)the Guangdong Provincial Natural Science Foundation of Major Basic Research and Cultivation Project(2018B030308003)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(161032)We thank Instrumental Analysis Center of Shenzhen University(Lihu Campus).
文摘Multimodal cancer synergistic therapy exhibited remarkable advantages over monotherapy in producing an improved therapeutic efficacy. In this work, Janus-type γ-Fe2 O3/SiO2 nanoparticles(JFSNs) are conjugated with glucose oxidase(GOx) for synergistic cancer starvation/chemodynamic therapy. The γ-Fe2O3 hemisphere of JFSNs can perform photoacoustic/T2 magnetic resonance dual-modal imaging of tumors.GOx on the surface of JFSNs catalyzes the decomposition of glucose and produces H2O2 for cancer starvation therapy. Subsequently, the γ-Fe2O3 hemisphere catalyzes the disproportionation of H2O2 to generate highly reactive hydroxyl radicals in an acidic tumor microenvironment. The close distance between GOx and JFSNs ensures adequate contact between the γ-Fe2O3 hemisphere and its substrate H2O2, thus enhancing the catalytic efficiency. This synergy of glucose depletion, biotoxic H2O2 and hydroxyl radicals significantly suppresses 4 T1 mammary tumor growth with minimal adverse effects.