The structural diversity of different tree-crop associations were studied at Gachabari Sal forest area of Madhupur Garh on Buffer and Peripheral Zone during 2006. The total density, basal area of trees in the Buffer a...The structural diversity of different tree-crop associations were studied at Gachabari Sal forest area of Madhupur Garh on Buffer and Peripheral Zone during 2006. The total density, basal area of trees in the Buffer and Peripheral Zone were 155.5 trees·hm^(-2), 795.4 trees·hm^(-2) and 3.9 m2·hm-2, 5.8 m^2·hm^(-2), respectively. No regeneration and natural trees were found in Peripheral Zone and the Zone is totally occupied by exotic species where the Buffer Zone comprised of both natural and exotic trees. The Peripheral Zone belonged to younger and smaller trees whereas the Buffer Zone belonged to mixture of smaller, taller, younger and mature trees simultaneously. For the practicing of different agroforestry systems both Zones have lost their original characters of Sal forest.展开更多
A greenhouse pot experiment was conducted to evaluate pyrene degradation, microbial biomass, basal soil respiration, metabolic quotient (qCO2), soil enzyme activities, and the FAME patterns of rhizospheric soil and ...A greenhouse pot experiment was conducted to evaluate pyrene degradation, microbial biomass, basal soil respiration, metabolic quotient (qCO2), soil enzyme activities, and the FAME patterns of rhizospheric soil and nonrhizospheric soil. The results showed that the pyrene concentrations in soil decreased with time extending and were very significant less in rhizospheric soil grown with maize plants (p〈0.01). At the end of the 45-day experiment, the ratios of pyrene degradation were 61.25% and 35.58% in rhizospheric and nonrhizospheric soil, respectively. Maize enhanced the decrease of pyrene concentration and increased the degradation rate of pyrene in soil. During the experimental period, a relatively large amount of microbial biomass biomass (Craig), basal soil respiration, the Cmic/Corg ratio, enzyme (urease, dehydrogenase, polyphenol oxidase, and catalase) activities were detected in rbizospheric soil. Metabolic quotient was lower in rhizospheric soil than in nonrhizospheric soil at the whole experimental period. Soil microbial communities in rhizospheric soil and nonrhizospheric soil were characterized using fatty acid methyl ester (FAME) analysis. Fatty acid profiles demonstrated that soil microbial community structure was significantly altered in pyrene contaminated soil with maize. Fatty acid indicators for fungi and the ratio of fungi to bacteria significant increased, and fatty acid indicators for bacteria and Gram-negative bacteria significantly decreased. The effect gradually increased and got very significant (p〈0.01) with the time extending. The differences of fatty acid indicators for arbuscular mycorrhizal fungi (AMF), Gram-positive bacteria and actinomycetes gradually increased, and the differences reached significant level (p〈0.05) at the end of the experiment (45 d).展开更多
文摘The structural diversity of different tree-crop associations were studied at Gachabari Sal forest area of Madhupur Garh on Buffer and Peripheral Zone during 2006. The total density, basal area of trees in the Buffer and Peripheral Zone were 155.5 trees·hm^(-2), 795.4 trees·hm^(-2) and 3.9 m2·hm-2, 5.8 m^2·hm^(-2), respectively. No regeneration and natural trees were found in Peripheral Zone and the Zone is totally occupied by exotic species where the Buffer Zone comprised of both natural and exotic trees. The Peripheral Zone belonged to younger and smaller trees whereas the Buffer Zone belonged to mixture of smaller, taller, younger and mature trees simultaneously. For the practicing of different agroforestry systems both Zones have lost their original characters of Sal forest.
文摘A greenhouse pot experiment was conducted to evaluate pyrene degradation, microbial biomass, basal soil respiration, metabolic quotient (qCO2), soil enzyme activities, and the FAME patterns of rhizospheric soil and nonrhizospheric soil. The results showed that the pyrene concentrations in soil decreased with time extending and were very significant less in rhizospheric soil grown with maize plants (p〈0.01). At the end of the 45-day experiment, the ratios of pyrene degradation were 61.25% and 35.58% in rhizospheric and nonrhizospheric soil, respectively. Maize enhanced the decrease of pyrene concentration and increased the degradation rate of pyrene in soil. During the experimental period, a relatively large amount of microbial biomass biomass (Craig), basal soil respiration, the Cmic/Corg ratio, enzyme (urease, dehydrogenase, polyphenol oxidase, and catalase) activities were detected in rbizospheric soil. Metabolic quotient was lower in rhizospheric soil than in nonrhizospheric soil at the whole experimental period. Soil microbial communities in rhizospheric soil and nonrhizospheric soil were characterized using fatty acid methyl ester (FAME) analysis. Fatty acid profiles demonstrated that soil microbial community structure was significantly altered in pyrene contaminated soil with maize. Fatty acid indicators for fungi and the ratio of fungi to bacteria significant increased, and fatty acid indicators for bacteria and Gram-negative bacteria significantly decreased. The effect gradually increased and got very significant (p〈0.01) with the time extending. The differences of fatty acid indicators for arbuscular mycorrhizal fungi (AMF), Gram-positive bacteria and actinomycetes gradually increased, and the differences reached significant level (p〈0.05) at the end of the experiment (45 d).