期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
群体药代动力学/群体药效动力学原理及研究方法 被引量:34
1
作者 芮建中 张震 李金恒 《医学研究生学报》 CAS 2005年第3期246-249,共4页
 自美国食品药品管理局(FDA)允许群体分析法在新药Ⅱ期、Ⅲ期临床试验中用于特殊生理病理受试对象的药代动力学(PK)和药效动力学(PD)评价以来,群体药代动力学 /群体药效动力学 (PPK/PPD)的研究方法、统计分析、常用软件及其在临床药理...  自美国食品药品管理局(FDA)允许群体分析法在新药Ⅱ期、Ⅲ期临床试验中用于特殊生理病理受试对象的药代动力学(PK)和药效动力学(PD)评价以来,群体药代动力学 /群体药效动力学 (PPK/PPD)的研究方法、统计分析、常用软件及其在临床药理学中的应用有了较大发展。作者介绍了PPK/PPD的基本原理、实验设计、模型确定和参数验证的进展。 展开更多
关键词 群体药代动力学 群体药效动力学 非线性混合效应模型
下载PDF
脑外科病人丙泊酚的群体药效动力学 被引量:2
2
作者 李玉红 徐建红 +1 位作者 芮建中 徐建国 《中国药学杂志》 CAS CSCD 北大核心 2006年第17期1334-1337,共4页
目的 考察脑外科病人丙泊酚的群体药效动力学特征,以及年龄、体重或性别等固定效应对丙泊酚药效动力学的影响。方法 27例ASAⅠ~Ⅱ级择期脑外科手术病人。经静脉注射丙泊酚2mg·kg^-1(5min),再以10mg·kg^-1·h^-1速率... 目的 考察脑外科病人丙泊酚的群体药效动力学特征,以及年龄、体重或性别等固定效应对丙泊酚药效动力学的影响。方法 27例ASAⅠ~Ⅱ级择期脑外科手术病人。经静脉注射丙泊酚2mg·kg^-1(5min),再以10mg·kg^-1·h^-1速率微量泵维持5min,之后停用丙泊酚。分别于给药前,给药后不同时间根据BIS index值的变化抽取血液和脑脊液,每个病人抽取6个标本。用高效液相色谱荧光法检测血浆中和脑脊液中的丙泊酚浓度;选择双频谱脑电图指数(bispectral index,BIS index)作为药效指标。首先用Excel对数据进行预处理,再用NONMEM法对效应BIS index值与血浆和与脑脊液丙泊酚浓度分别进行模型拟合.并考察年龄、体重或性别等固定效应对丙泊酚药效动力学的影响。结果 NONMEM程序分析的结果:线性加法模型的药效参数a,b分别为1.11和95.4;线性指数模型的药效参数a,b分别为1.05和92.7;Sitgnoid Emax模型的药效参数Emax,EG50和N分别为119,53.6和1.51。用上述3种模型参数预算脑脊液的丙泊酚浓度与实测浓度的相关性很好,r^2值分别为0.9112.0.9146,0.926。结论 可用线性加法模型、线性指数模型和Sitgnoid Emax模型描述丙泊酚的药效动力学特征。 展开更多
关键词 丙泊酚 群体药效动力学 双频谱脑电图指数
下载PDF
乙二醇重组人生长激素(PHA-794428)的群体药代动力学/群体药效动力学在健康男性志愿者中的研究
3
作者 XIE Ru-jia Didier Eric +2 位作者 Harris Philip Milligan Peter A Karlsson Mats O 《中国临床药理学与治疗学》 CAS CSCD 2007年第10期1192-1193,共2页
AIM: The purpose of this analysis was to construct appropriate models to characterise population pharmacokinetics (PK) for PHA-794428 and PK/pharmacodynamics (PD) for the efficacy biomarker Insulin-like Growth factor-... AIM: The purpose of this analysis was to construct appropriate models to characterise population pharmacokinetics (PK) for PHA-794428 and PK/pharmacodynamics (PD) for the efficacy biomarker Insulin-like Growth factor-1 (IGF-1). METHODS: Fifty-six male healthy volunteers were enrolled into a clinical study. Subjects received in a randomised manner 3 subcutaneous injections over 3 periods: i) 3.6 mg recombinant human growth hormone (rhGH), ii) PHA-794428 0, 3, 10, 30, 60, 100, 300 or 500 μg/kg, and iii) PHA-794428 0, 10, or 30 μg/kg. Both PK and IGF-1 data were collected up to 336 h post-dose. The PK and PK/PD models were constructed in 3 stages: i) the PK model was developed, ii) the PK parameters were fixed during IGF-1 model building, iii) PK and IGF-1 data were analysed simultaneously. RESULTS: PHA-794428 exhibited non-linearity with respect to dose. A one-compartment disposition model with parallel linear and non-linear elimination most appropriately described the PHA-794428 serum concentrations versus time data. The absorption of PHA-794428 was characterised as a first-order process involving two absorption rate constants. The nonlinear elimination, characterised in terms of the maximal elimination capacity (Vmax=91.5 μg/h for 70 kg) and Michaelis-Menten constant (Km=73.9 μg/L) describing the concentration at which elimination is at half Vmax. The non-linear elimination pathway is approximately 10 times higher than the linear route (0.129 L/h). PHA-794428 has a limited distribution in the blood (V=4.4 L), due to its large molecular weight. Serum IGF-1 concentrations versus time data were best described by an indirect response model with PEG-hGH stimulating IGF-1 production rate. Drug effect was appropriately characterised by a maximum effect (Emax) model. The maximal IGF-1 production rate could increase up to 8-fold across the dose range studied. The PHA-794428 concentration at half Emax (EC50) is 56.5 ng/mL. A negative feedback loop was incorporated into the PK/IGF-1 model. The maximal inhibition (Imax) of IGF-1 on endogenous GH secretion was set to 100% and IC50, the IGF-1 concentration decreasing GH secretion by 50%, was 382 ng/mL. Placebo effect was negligible. CONCLUSION: Serum data of PHA-794428 and IGF-1 could be adequately described by PK and PK/IGF-1 models, which were successfully used to predict the doses and time course of PK and IGF-1 and study design for the subsequent clinical trials in adult patients with growth hormone deficiency (AGHD). PK/PD modelling and simulation demonstrated that PHA-794428 has a potential to return low IGF-1 levels to within the normal range by weekly dosing. 展开更多
关键词 乙二醇重组人生长激素 群体药代动力学 群体药效动力学 男性 健康受试者
下载PDF
卡泊芬净的群体药代动力学-药效动力学研究进展 被引量:1
4
作者 李曼娜 林晓莹 +1 位作者 黄银璇 谢慧 《中国药房》 CAS 北大核心 2022年第5期635-640,共6页
卡泊芬净是首个批准临床使用的棘白菌素类抗真菌药物,用于治疗由念珠菌或者曲霉菌引起的严重真菌感染,目前已是侵袭性念珠菌的一线推荐治疗药物和侵袭性曲霉菌的二线治疗药物,且具有良好的安全性和耐受性。但是,卡泊芬净在不同患者人群... 卡泊芬净是首个批准临床使用的棘白菌素类抗真菌药物,用于治疗由念珠菌或者曲霉菌引起的严重真菌感染,目前已是侵袭性念珠菌的一线推荐治疗药物和侵袭性曲霉菌的二线治疗药物,且具有良好的安全性和耐受性。但是,卡泊芬净在不同患者人群中依然存在药代动力学变异大、体内暴露低等治疗风险。本文回顾了卡泊芬净在儿童和成人中开展的群体药代动力学-药效动力学研究。结果显示,体表面积是影响儿童患者卡泊芬净分布和清除的主要因素。在成人患者中,二室模型能较好地描述卡泊芬净的体内过程,影响其药代动力学参数的主要协变量是体质量和白蛋白浓度。卡泊芬净的药效可能与血药浓度-时间曲线下面积与最低抑菌浓度的比值(AUC/MIC)、峰浓度与最小有效浓度的比值(c_(max)/MEC)等药代动力学-药效动力学参数相关。 展开更多
关键词 卡泊芬净 群体药代动力学-药效动力学 个体化给药 儿童 成人
下载PDF
群体药代动力学/药效学模型在抗肿瘤药物临床研究中的应用进展 被引量:4
5
作者 黄洁华 王思怡 +4 位作者 管宴萍 姜福林 李苏 黄民 钟国平 《中国临床药理学杂志》 CAS CSCD 北大核心 2019年第22期2930-2933,2947,共5页
定量药理学在抗肿瘤药物临床研究中的应用愈来愈广泛。通过建模与模拟技术确定暴露-效应-疾病进程的定量关系,预测不同给药方案下药物的暴露量、疗效以及药物不良反应,从而提高研发效率和科学决策水平。目前关于抗肿瘤药物最常用的定量... 定量药理学在抗肿瘤药物临床研究中的应用愈来愈广泛。通过建模与模拟技术确定暴露-效应-疾病进程的定量关系,预测不同给药方案下药物的暴露量、疗效以及药物不良反应,从而提高研发效率和科学决策水平。目前关于抗肿瘤药物最常用的定量药理学方法为群体药代动力学/药效学模型,可用于描述肿瘤大小、生物标志物、药物不良反应指标的动态变化或预测患者生存期长短,本文就此类模型的研究进展及应用进行综述。 展开更多
关键词 定量药理学 群体药代动力学/药效学模型 抗肿瘤药物 临床研究
原文传递
华法林抗凝个体化治疗研究进展 被引量:11
6
作者 胡静 朱君荣 于锋 《中国临床药理学与治疗学》 CAS CSCD 2014年第5期591-596,共6页
华法林是临床使用最多的口服抗凝药,其治疗窗窄,剂量个体差异大,容易发生出血或栓塞的风险,如何准确地调整华法林剂量一直是其抗凝治疗的关键及研究热点。多种因素均会影响华法林剂量,尤其是遗传因素(主要是CYP2C9、VKORC1及CYP4F2基因... 华法林是临床使用最多的口服抗凝药,其治疗窗窄,剂量个体差异大,容易发生出血或栓塞的风险,如何准确地调整华法林剂量一直是其抗凝治疗的关键及研究热点。多种因素均会影响华法林剂量,尤其是遗传因素(主要是CYP2C9、VKORC1及CYP4F2基因)。近十年来,基于药物基因组学的剂量预测模型和药代动力学药效学的快速发展,为华法林个体化治疗提供了新的契机。该文结合国内外各种华法林稳定剂量预测模型研究,总结影响华法林剂量相关因素的最新研究进展,旨在为华法林个体化治疗提供参考和指导依据。 展开更多
关键词 华法林 个体化治疗 药物基因组学 剂量预测模型 群体药代动力学药效
下载PDF
Bayesian analysis for mixed-effects model defined by stochastic differential equations
7
作者 言方荣 张萍 +1 位作者 陆涛 林金官 《Journal of Southeast University(English Edition)》 EI CAS 2014年第1期122-127,共6页
The nonlinear mixed-effects model with stochastic differential equations (SDEs) is used to model the population pharmacokinetic (PPK) data that are extended from ordinary differential equations (ODEs) by adding ... The nonlinear mixed-effects model with stochastic differential equations (SDEs) is used to model the population pharmacokinetic (PPK) data that are extended from ordinary differential equations (ODEs) by adding a stochastic term to the state equation. Compared with the ODEs, the SDEs can model correlated residuals which are ubiquitous in actual pharmacokinetic problems. The Bayesian estimation is provided for nonlinear mixed-effects models based on stochastic differential equations. Combining the Gibbs and the Metropolis-Hastings algorithms, the population and individual parameter values are given through the parameter posterior predictive distributions. The analysis and simulation results show that the performance of the Bayesian estimation for mixed-effects SDEs model and analysis of population pharmacokinetic data is reliable. The results suggest that the proposed method is feasible for population pharmacokinetic data. 展开更多
关键词 population pharmacokinetics mixed-effectsmodels stochastic differential equations Bayesian analysis
下载PDF
Population pharmacokinetic of losartan and its active metabolite E-3174 in five different ethnic populations of China
8
作者 杨璐 孙路路 +4 位作者 郭涛 夏东亚 王曦培 李新刚 卢炜 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2014年第8期548-557,共10页
The aim of this study was to develop a combined population pharmacokinetic (PPK) model for losartan and its active metabolite E-3174 in five Chinese ethnicities for individualized drug therapy in clinical practice. ... The aim of this study was to develop a combined population pharmacokinetic (PPK) model for losartan and its active metabolite E-3174 in five Chinese ethnicities for individualized drug therapy in clinical practice. HPLC method was used to determine the blood levels of losartan and E-3174 simultaneously. One-, two- and three-compartment models were fitted to plasma concentration time data of 50 Chinese healthy subjects (including Han, Mongolian, Korean, Hui and Uigur) using nonlinear mixed-effect modeling (NONMEM). From the basic model of losartan, the effects of demography and biochemical covariates were investigated, which were added one by one by the forward inclusion and backward elimination. The final models of losartan and E-3174 were connected by first order or transit compartment model. Pharmacokinetic parameters of losartan and its active metabolite E-3174 were assessed simultaneously in one integrated model with the plausible covariates on the key pharmacokinetic parameters of E-3174. Nonparametric bootstrap was used for the model stability validation. The data of losartan were best described using a two-compartment model with linear elimination. The time to reach Cmax of losartan and E-3174 were obtained to be 0.9 and 3.8 h, respectively. Two transit compartments were chosen with adequate fit of the delayed Tmax of E-3174. The population estimates for transformation of losartan to E-3174 was about 73.9%. Ethnicity factor showed significant influence on the non-metabolizing E-3174 clearance CL10, the peripheral compartment clearance CL2 and the central compartment volume Vj of losartan and also has a significant effect on the transit rate (Kt). A total of 925 out of 1000 iterations succeeded in minimization. The PPK models were steady and reliable. Ethnicity factor showed significant influence on both losartan clearance and the transition from losartan to E-3174, no covariate influencing the PK parameters of E-3174 was identified. 展开更多
关键词 LOSARTAN E-3174 Population pharmacokinetics NONMEM ETHNICITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部