The increase of atmospheric CO 2 concentration is indisputable. In such condition, photosynthetic response of leaf is relatively well studied, while the comparison of that between single leaf and whole canopy is less...The increase of atmospheric CO 2 concentration is indisputable. In such condition, photosynthetic response of leaf is relatively well studied, while the comparison of that between single leaf and whole canopy is less emphasized. The stimulation of elevated CO 2 on canopy photosynthesis may be different from that on single leaf level. In this study, leaf and canopy photosynthesis of rice (Oryza sativa L.) were studied throughout the growing season. High CO 2 and temperature had a synergetic stimulation on single leaf photosynthetic rate until grain filling. Photosynthesis of leaf was stimulated by high CO 2, although the stimulation was decreased by higher temperature at grain filling stage. On the other hand, the simulation of elevated CO 2 on canopy photosynthesis leveled off with time. Stimulation at canopy level disappeared by grain filling stage in both temperature treatments. Green leaf area index was not significantly affected by CO 2 at maturity, but greater in plants grown at higher temperature. Leaf nitrogen content decreased with the increase of CO 2 concentration although it was not statistically significant at maturity. Canopy respiration rate increased at flowering stage indicating higher carbon loss. Shading effect caused by leaf development reached maximum at flowering stage. The CO 2 stimulation on photosynthesis was greater in single leaf than in canopy. Since enhanced CO 2 significantly increased biomass of rice stems and panicles, increase in canopy respiration caused diminishment of CO 2 stimulation in canopy net photosynthesis. Leaf nitrogen in the canopy level decreased with CO 2 concentration and may eventually hasten CO 2 stimulation on canopy photosynthesis. Early senescence of canopy leaves in high CO 2 is also a possible cause.展开更多
The greenness (SPAD) of uneven-aged leaves of dominant species in the Castanopsis carlessi forest at different altitude gradients in Lingshishan National Forest Park, Fujian Province, China were measured by using po...The greenness (SPAD) of uneven-aged leaves of dominant species in the Castanopsis carlessi forest at different altitude gradients in Lingshishan National Forest Park, Fujian Province, China were measured by using portable chlorophyll meter SPAD-502. In addition, the correlation between SPAD value and the concentration of chlorophyll and foliar nitrogen was also investigated. Significant variations in SPAD values were found between the uneven-aged leaves of different dominant species and different altitude gradients. Regression analysis showed that SPAD value was significantly correlated with the concentration of chlorophyll and the content of foliar nitrogen, indicating that SPAD value could be indicators for foliar chlorophyll and nitrogen. It is suggested that SPAD meter is a useful tool for forest assessments in decision-making and operational nutrient management programs.展开更多
The former plant population survey has shown that three genetically-related species, Caraganamicrophylla Lam., C. davazamcii Sancz. and C. korshinskii Kom., form a geographical replacement series inNei Mongol Plateau....The former plant population survey has shown that three genetically-related species, Caraganamicrophylla Lam., C. davazamcii Sancz. and C. korshinskii Kom., form a geographical replacement series inNei Mongol Plateau. The present study on population distribution, taxonomy, morphology, development andgenetic structure demonstrated that the geographical distribution of these three species was successiveand in gradual change, thus forming a geographical cline which extended from the east to the west of NeiMongol Plateau. With an analysis of climate change over time, it was considered that the formation of thisgeographical cline was a result of plant adaptation to its natural environment.展开更多
[Objective] This study aimed to investigate the leaf anatomical structures of P. tunicoides populations under water-limited conditions. [Method] 2-year-old seedlings of herbaceous perennial P. tunicoides that was intr...[Objective] This study aimed to investigate the leaf anatomical structures of P. tunicoides populations under water-limited conditions. [Method] 2-year-old seedlings of herbaceous perennial P. tunicoides that was introduced into the experi- mental field were selected as the research objects. Under the well-watered and wa- ter-limited conditions, we conducted the comparative observation of leaf anatomical structure and stomatal characteristics of two populations by using paraffin slice method and imprinting method. [Result] The result showed that the upper cuticle of P. tunicoides leaves were thickened, the palisade tissue/spongy tissue ratio, vascular bundle diameter and number of xylem vessels in main vein had increased, the stomatal opening became smaller and the stomatal density had increased in winter- spring drought period under water-limited conditions. The plasticity of above traits could be regarded as the important indicators for detecting the responses of P. tunicoides populations to water-limited conditions. Meanwhile, variation amplitudes of these indicators were different among populations. Leaf anatomical structure and stomatal characteristics in Lijiang Axi population under water-limited conditions varied significantly, which might cause the stronger adaptability of this population to drought conditions. [Conclusion] This research provided a reference for the selection of drought-resistant P. tunicoides germplasm and exploration of the adaptive differentia- tion of P. tunicoides populations under natural drought conditions.展开更多
[Objective] The aim was to study on the effects of long-term low radiation on canopy apparent photosynthetic rate (CAP) and photosynthetic properties of top three leaves of winter wheat, especially the flag leaf. [M...[Objective] The aim was to study on the effects of long-term low radiation on canopy apparent photosynthetic rate (CAP) and photosynthetic properties of top three leaves of winter wheat, especially the flag leaf. [Method] Two winter wheat (Triticum aestivum L) cultivars, Yangmai 158 and Yangmai 11, which differed in low radiation resistance, were used to measure the CAP, photosynthetic rate (Pn) of the top three leaves, chlorophyll content of flag leaf and grain yield. In the test, three treatments were designed from jointing to maturity, as follows: control without shad- ing (So), S1 and S2 treatments with 22% and 33% sunshine shaded. [Result] CAP of Yangmai 158 and Yangmai 11 declined with shading. Under low radiation, Pn of flag leaf declined significantly, while no obvious effects were found on Pn of the 2nd leaf, and Pn of the 3rn leaf increased significantly, which partially compensated the decrease of Pn of the flag leaf. In addition, the compensation effect differed in shading and cultivars: compensation effect in S1 group was higher than that of S2 and effect of Yangmai 158 was higher than that of Yangmai 11. During the period of high Pn. shading decreased the content of total chlorophyll, chlorophyll a, b, and a/b. [Conclusion] Under low radiation, the decrease of chlorophyll a and a/b led to substantial declining of Pn. and CAP declined accordingly, finally resulting in drop of grain yield. The research provides important theoretical basis for wheat production in the middle and lower reaches of Yangtze River.展开更多
[Objective] The aim was to study the dynamic variation of extinction coefficient of corn population, so as to improve the accuracy of assessment on net primary productivity (NPP) or yield. [Method] Based on the data...[Objective] The aim was to study the dynamic variation of extinction coefficient of corn population, so as to improve the accuracy of assessment on net primary productivity (NPP) or yield. [Method] Based on the data of photosynthetic active radiation and leaf area index during corn growing season (from May to September) in 2006, observed in Jinzhou observation station of corn farmland ecosystem, China Meteorological Administration, the dynamic variation of extinction coefficient of corn population was analyzed. [Result] There was a great daily variation in the extinction coefficient of corn population during growing season, and the maximum value appeared from 7:00 to 9:00 and from 15:00 to 17:00, while the minimum could be found around 12:00, but the amplitude of variation decreased in tasseling stage. On a large time scale (5 d), there was a parabolic relationship between extinction coefficient (K) and leaf area index (LAI), with determination coefficient R2 of 0.960 7. The simulation equation of extinction coefficient, based on the sun elevation angle or leaf area index, had poor accuracy at various time during growing season, so a new dynamic model of extinction coefficient was established, namely K=λ(0.784 8-0.001 6θ)(0.154 8LAI2-0.558 6LAI+0.654). [Conclusion] The effect of sun elevation angle and leaf area index on extinction coefficient during corn growing season was considered in the new dynamic model of extinction coefficient, and its simulated result was superior to that of single-factor model.展开更多
We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to thi...We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.展开更多
The isolated and anatomically_preserved lepidodendralean leaf cushions were described from coal balls in Wangjiazhai Formation (upper Upper Permian) in western Guizhou Province. These leaf cushions are very similar t...The isolated and anatomically_preserved lepidodendralean leaf cushions were described from coal balls in Wangjiazhai Formation (upper Upper Permian) in western Guizhou Province. These leaf cushions are very similar to Lepidodendron lepidophloides Yao both in size and morphology. They probably belong to the same species in different preservative condition. Comparisons on morphology and anatomy of L. lepidophloides and lepidodendralean leaf cushion genera, such as Lepidodendron, Lepidophloios, Sigillaria and Cathaysiodendron revealed that L. lepidophloides possesses mixed features of all these genera and it can not be assigned into any of them without doubt. It probably represents a new genus. Because the anatomical features of the other parts of the stem as well as the fertile organs related to these leaf cushions are unknown, the specific name L. lepidophloides is adopted. We leave this taxonomic problem open till the relationship between these leaf cushions and the stem and fertile organs become clear. This is the first report on the detailed anatomical features of the Cathaysian lepidodendralean leaf cushions.展开更多
To understand the relationship between the plankton community and environmental factor and water quality in the Bayuquan Port of Liaodong Bay, China, and investigations were carried ou during six dif ferent periods(Ap...To understand the relationship between the plankton community and environmental factor and water quality in the Bayuquan Port of Liaodong Bay, China, and investigations were carried ou during six dif ferent periods(April 2009, April 2010, October 2011, April 2012, October 2012, and Apri 2013). This area was characterized by high levels of nutrient and suspended solids(SPS) during surve periods, and eutrophication led to the occurrence of red tides in April and October 2012 and April 2013 Our analyses revealed that the plankton communities of Bayuquan Port lacked stability and were af fecte seriously by external disturbance(e.g., oceanographic engineering and river runof f). Our data indicate tha oil, dissolved inorganic nitrogen(DIN), SPS, and chlorophyll a(Chl- a) were key factors that regulated th phytoplankton and zooplankton communities. The partial redundancy analysis(partial RDA) suggested tha oil and SPS were the most important environmental variables af fecting the phytoplankton community i April 2010 and 2012, whereas DIN concentration played a governing role in zooplankton dynamics. Oi and Chl-a concentrations af fected signifi cantly the zooplankton community in October 2012. Therefore, th plankton communities could refl ect both dynamic changes in coastal environmental factors and the ongoin eutrophication process caused by anthropogenic activities in this area.展开更多
Photo-protective functions were investigated in phytoplankton assemblages at Kongsfjorden, Svalbard in spring, using their UV-absorbing compounds (mycosporine-like amino acids (MAAs)), xanthophyllpigments (diadin...Photo-protective functions were investigated in phytoplankton assemblages at Kongsfjorden, Svalbard in spring, using their UV-absorbing compounds (mycosporine-like amino acids (MAAs)), xanthophyllpigments (diadinoxanthin (DD) and diatoxanthin (DT)) and〈beta〉-dimethylsulphoniopropionate (〈beta〉-DMSP). The dominant phytoplankton species in the inner bay were dominated by Phaeocystis spp. and nanoflagellates, while the offshore waters were dominated by Thalassiosira spp. In the inner bay, UV- absorbing compounds and xanthophyll pigments exhibited higher ratios of MAA to chlorophyll a (MAA:chl a ratio), and both DD and DT to chlorophyll a (DD:chl a ratio and DT:chl a ratio), respectively. Thus, the photoprotective-pigrnents such as DD and DT appear to complement MAAs in the natural phytoplankton assemblage. However, the ratio of 〈beta〉-DMSP to chlorophyll a (〈beta〉-DMSP:chl a ratio) did not show a distinct spatial distribution according to environmental factors or interspecies differences. In this study, we found that photoprotective compounds occurred in a manner dependent on the phytoplankton species composition in Kongsfjorden Bay, where Phaeocystis is the dominant species.展开更多
In order to reveal the genetic diversity and variation sources of leaf phenotypic traits in walnut,the coefficient of variation,Shannon-weaver index,phenotypic differentiation coefficient,and the correlation of 9 leaf...In order to reveal the genetic diversity and variation sources of leaf phenotypic traits in walnut,the coefficient of variation,Shannon-weaver index,phenotypic differentiation coefficient,and the correlation of 9 leaf phenotypic traits for 251 walnut germplasm resources from two walnut populations were analyzed.The results showed that the averages of the variation coefficients and Shannon-weaver indexes of the leaf phenotype traits were 17.45%and 1.86 respectively.The F values of most inter-population traits and all intra-population traits were highly significant,and the F values of inter-population leaf shape index,leaflet number,length and leaf length were very large.The averages of inter-population and intra-population differentiation coefficients were 9.15%and 90.85%respectively.The leaf size,leaf thickness,and leaflet number were highly correlated with trunk perimeters.According to the results of principal component analyses,the 9 traits can be simplified into four principal components,which represent leaf size,petiole,leaflet number and leaf shape,respectively.There were extensive variations and rich genetic diversities in leaf phenotypic traits of walnut,and the intra-population variation was the leading source of phenotypic trait variation.Leaf shape index,leaflet number,internode length and leaf length can be used for population classification.The size and thickness of leaves and the number of leaflets will affect the accumulation of nutrients in walnut tree,and then affect its trunk perimeter.展开更多
文摘The increase of atmospheric CO 2 concentration is indisputable. In such condition, photosynthetic response of leaf is relatively well studied, while the comparison of that between single leaf and whole canopy is less emphasized. The stimulation of elevated CO 2 on canopy photosynthesis may be different from that on single leaf level. In this study, leaf and canopy photosynthesis of rice (Oryza sativa L.) were studied throughout the growing season. High CO 2 and temperature had a synergetic stimulation on single leaf photosynthetic rate until grain filling. Photosynthesis of leaf was stimulated by high CO 2, although the stimulation was decreased by higher temperature at grain filling stage. On the other hand, the simulation of elevated CO 2 on canopy photosynthesis leveled off with time. Stimulation at canopy level disappeared by grain filling stage in both temperature treatments. Green leaf area index was not significantly affected by CO 2 at maturity, but greater in plants grown at higher temperature. Leaf nitrogen content decreased with the increase of CO 2 concentration although it was not statistically significant at maturity. Canopy respiration rate increased at flowering stage indicating higher carbon loss. Shading effect caused by leaf development reached maximum at flowering stage. The CO 2 stimulation on photosynthesis was greater in single leaf than in canopy. Since enhanced CO 2 significantly increased biomass of rice stems and panicles, increase in canopy respiration caused diminishment of CO 2 stimulation in canopy net photosynthesis. Leaf nitrogen in the canopy level decreased with CO 2 concentration and may eventually hasten CO 2 stimulation on canopy photosynthesis. Early senescence of canopy leaves in high CO 2 is also a possible cause.
基金supported by National Natural Science Foundation of China (No: 30671664)
文摘The greenness (SPAD) of uneven-aged leaves of dominant species in the Castanopsis carlessi forest at different altitude gradients in Lingshishan National Forest Park, Fujian Province, China were measured by using portable chlorophyll meter SPAD-502. In addition, the correlation between SPAD value and the concentration of chlorophyll and foliar nitrogen was also investigated. Significant variations in SPAD values were found between the uneven-aged leaves of different dominant species and different altitude gradients. Regression analysis showed that SPAD value was significantly correlated with the concentration of chlorophyll and the content of foliar nitrogen, indicating that SPAD value could be indicators for foliar chlorophyll and nitrogen. It is suggested that SPAD meter is a useful tool for forest assessments in decision-making and operational nutrient management programs.
文摘The former plant population survey has shown that three genetically-related species, Caraganamicrophylla Lam., C. davazamcii Sancz. and C. korshinskii Kom., form a geographical replacement series inNei Mongol Plateau. The present study on population distribution, taxonomy, morphology, development andgenetic structure demonstrated that the geographical distribution of these three species was successiveand in gradual change, thus forming a geographical cline which extended from the east to the west of NeiMongol Plateau. With an analysis of climate change over time, it was considered that the formation of thisgeographical cline was a result of plant adaptation to its natural environment.
基金Supported by National Natural Science Foundation of China(30370156)Yunnan Provincial Key Discipline of Ornamental Plants and Horticulture of Southwest Forestry University,Key Laboratories and School Laboratories Sharing Platform of Provincial Colleges~~
文摘[Objective] This study aimed to investigate the leaf anatomical structures of P. tunicoides populations under water-limited conditions. [Method] 2-year-old seedlings of herbaceous perennial P. tunicoides that was introduced into the experi- mental field were selected as the research objects. Under the well-watered and wa- ter-limited conditions, we conducted the comparative observation of leaf anatomical structure and stomatal characteristics of two populations by using paraffin slice method and imprinting method. [Result] The result showed that the upper cuticle of P. tunicoides leaves were thickened, the palisade tissue/spongy tissue ratio, vascular bundle diameter and number of xylem vessels in main vein had increased, the stomatal opening became smaller and the stomatal density had increased in winter- spring drought period under water-limited conditions. The plasticity of above traits could be regarded as the important indicators for detecting the responses of P. tunicoides populations to water-limited conditions. Meanwhile, variation amplitudes of these indicators were different among populations. Leaf anatomical structure and stomatal characteristics in Lijiang Axi population under water-limited conditions varied significantly, which might cause the stronger adaptability of this population to drought conditions. [Conclusion] This research provided a reference for the selection of drought-resistant P. tunicoides germplasm and exploration of the adaptive differentia- tion of P. tunicoides populations under natural drought conditions.
基金Supported by Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (10KJB210002)China Postdoctoral Science Foundation (20110491442)Jiangsu Planned Projects for Postdoctoral Research Funds (1101059C)~~
文摘[Objective] The aim was to study on the effects of long-term low radiation on canopy apparent photosynthetic rate (CAP) and photosynthetic properties of top three leaves of winter wheat, especially the flag leaf. [Method] Two winter wheat (Triticum aestivum L) cultivars, Yangmai 158 and Yangmai 11, which differed in low radiation resistance, were used to measure the CAP, photosynthetic rate (Pn) of the top three leaves, chlorophyll content of flag leaf and grain yield. In the test, three treatments were designed from jointing to maturity, as follows: control without shad- ing (So), S1 and S2 treatments with 22% and 33% sunshine shaded. [Result] CAP of Yangmai 158 and Yangmai 11 declined with shading. Under low radiation, Pn of flag leaf declined significantly, while no obvious effects were found on Pn of the 2nd leaf, and Pn of the 3rn leaf increased significantly, which partially compensated the decrease of Pn of the flag leaf. In addition, the compensation effect differed in shading and cultivars: compensation effect in S1 group was higher than that of S2 and effect of Yangmai 158 was higher than that of Yangmai 11. During the period of high Pn. shading decreased the content of total chlorophyll, chlorophyll a, b, and a/b. [Conclusion] Under low radiation, the decrease of chlorophyll a and a/b led to substantial declining of Pn. and CAP declined accordingly, finally resulting in drop of grain yield. The research provides important theoretical basis for wheat production in the middle and lower reaches of Yangtze River.
基金Supported by Major Project of Chinese National Programs for Fundamental Research and Development(2006CB400502)National Natural Science Funds for Distinguished Young Scholar(40625015)~~
文摘[Objective] The aim was to study the dynamic variation of extinction coefficient of corn population, so as to improve the accuracy of assessment on net primary productivity (NPP) or yield. [Method] Based on the data of photosynthetic active radiation and leaf area index during corn growing season (from May to September) in 2006, observed in Jinzhou observation station of corn farmland ecosystem, China Meteorological Administration, the dynamic variation of extinction coefficient of corn population was analyzed. [Result] There was a great daily variation in the extinction coefficient of corn population during growing season, and the maximum value appeared from 7:00 to 9:00 and from 15:00 to 17:00, while the minimum could be found around 12:00, but the amplitude of variation decreased in tasseling stage. On a large time scale (5 d), there was a parabolic relationship between extinction coefficient (K) and leaf area index (LAI), with determination coefficient R2 of 0.960 7. The simulation equation of extinction coefficient, based on the sun elevation angle or leaf area index, had poor accuracy at various time during growing season, so a new dynamic model of extinction coefficient was established, namely K=λ(0.784 8-0.001 6θ)(0.154 8LAI2-0.558 6LAI+0.654). [Conclusion] The effect of sun elevation angle and leaf area index on extinction coefficient during corn growing season was considered in the new dynamic model of extinction coefficient, and its simulated result was superior to that of single-factor model.
基金The project supported by National Natural Science Foundation of China under Grant No. 10371098 and the Program for New Century Excellent Talents in Universities under Grant No. NCET-04-0968
文摘We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.
文摘The isolated and anatomically_preserved lepidodendralean leaf cushions were described from coal balls in Wangjiazhai Formation (upper Upper Permian) in western Guizhou Province. These leaf cushions are very similar to Lepidodendron lepidophloides Yao both in size and morphology. They probably belong to the same species in different preservative condition. Comparisons on morphology and anatomy of L. lepidophloides and lepidodendralean leaf cushion genera, such as Lepidodendron, Lepidophloios, Sigillaria and Cathaysiodendron revealed that L. lepidophloides possesses mixed features of all these genera and it can not be assigned into any of them without doubt. It probably represents a new genus. Because the anatomical features of the other parts of the stem as well as the fertile organs related to these leaf cushions are unknown, the specific name L. lepidophloides is adopted. We leave this taxonomic problem open till the relationship between these leaf cushions and the stem and fertile organs become clear. This is the first report on the detailed anatomical features of the Cathaysian lepidodendralean leaf cushions.
基金Supported by the Natural Science Foundation of Liaoning Province(No.2014020182)the Marine and Fishery Research Project of Liaoning Province(No.201415)+1 种基金the National Natural Science Foundation of China(No.31400406)the Science and Technology Project of Liaoning Province(No.2015103044)
文摘To understand the relationship between the plankton community and environmental factor and water quality in the Bayuquan Port of Liaodong Bay, China, and investigations were carried ou during six dif ferent periods(April 2009, April 2010, October 2011, April 2012, October 2012, and Apri 2013). This area was characterized by high levels of nutrient and suspended solids(SPS) during surve periods, and eutrophication led to the occurrence of red tides in April and October 2012 and April 2013 Our analyses revealed that the plankton communities of Bayuquan Port lacked stability and were af fecte seriously by external disturbance(e.g., oceanographic engineering and river runof f). Our data indicate tha oil, dissolved inorganic nitrogen(DIN), SPS, and chlorophyll a(Chl- a) were key factors that regulated th phytoplankton and zooplankton communities. The partial redundancy analysis(partial RDA) suggested tha oil and SPS were the most important environmental variables af fecting the phytoplankton community i April 2010 and 2012, whereas DIN concentration played a governing role in zooplankton dynamics. Oi and Chl-a concentrations af fected signifi cantly the zooplankton community in October 2012. Therefore, th plankton communities could refl ect both dynamic changes in coastal environmental factors and the ongoin eutrophication process caused by anthropogenic activities in this area.
基金Supported by the Korea-Polar Ocean in Rapid Transition by the Ministry of Oceans and Fisheries,Korea(KOPRI,No.PM14040)
文摘Photo-protective functions were investigated in phytoplankton assemblages at Kongsfjorden, Svalbard in spring, using their UV-absorbing compounds (mycosporine-like amino acids (MAAs)), xanthophyllpigments (diadinoxanthin (DD) and diatoxanthin (DT)) and〈beta〉-dimethylsulphoniopropionate (〈beta〉-DMSP). The dominant phytoplankton species in the inner bay were dominated by Phaeocystis spp. and nanoflagellates, while the offshore waters were dominated by Thalassiosira spp. In the inner bay, UV- absorbing compounds and xanthophyll pigments exhibited higher ratios of MAA to chlorophyll a (MAA:chl a ratio), and both DD and DT to chlorophyll a (DD:chl a ratio and DT:chl a ratio), respectively. Thus, the photoprotective-pigrnents such as DD and DT appear to complement MAAs in the natural phytoplankton assemblage. However, the ratio of 〈beta〉-DMSP to chlorophyll a (〈beta〉-DMSP:chl a ratio) did not show a distinct spatial distribution according to environmental factors or interspecies differences. In this study, we found that photoprotective compounds occurred in a manner dependent on the phytoplankton species composition in Kongsfjorden Bay, where Phaeocystis is the dominant species.
文摘In order to reveal the genetic diversity and variation sources of leaf phenotypic traits in walnut,the coefficient of variation,Shannon-weaver index,phenotypic differentiation coefficient,and the correlation of 9 leaf phenotypic traits for 251 walnut germplasm resources from two walnut populations were analyzed.The results showed that the averages of the variation coefficients and Shannon-weaver indexes of the leaf phenotype traits were 17.45%and 1.86 respectively.The F values of most inter-population traits and all intra-population traits were highly significant,and the F values of inter-population leaf shape index,leaflet number,length and leaf length were very large.The averages of inter-population and intra-population differentiation coefficients were 9.15%and 90.85%respectively.The leaf size,leaf thickness,and leaflet number were highly correlated with trunk perimeters.According to the results of principal component analyses,the 9 traits can be simplified into four principal components,which represent leaf size,petiole,leaflet number and leaf shape,respectively.There were extensive variations and rich genetic diversities in leaf phenotypic traits of walnut,and the intra-population variation was the leading source of phenotypic trait variation.Leaf shape index,leaflet number,internode length and leaf length can be used for population classification.The size and thickness of leaves and the number of leaflets will affect the accumulation of nutrients in walnut tree,and then affect its trunk perimeter.