期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
改进粒子群优化超限学习机的调制信号识别 被引量:2
1
作者 梁猛 赵贝 《西安邮电大学学报》 2023年第2期57-64,共8页
针对现有算法在信噪比较小条件下对调制信号识别精度较差的问题,提出一种基于改进粒子群优化超限学习机的调制信号识别算法。以调制信号的高阶累积量为基础构建4种特征参数,并根据多进制相移键控(Multiple Phase Shift Keying,MPSK)信... 针对现有算法在信噪比较小条件下对调制信号识别精度较差的问题,提出一种基于改进粒子群优化超限学习机的调制信号识别算法。以调制信号的高阶累积量为基础构建4种特征参数,并根据多进制相移键控(Multiple Phase Shift Keying,MPSK)信号的相位特性引入归一化瞬时相位平均值和递归归一化瞬时相位平均值特征两个特征参数,构建调制信号的6种特征参数的数据集。利用粒子群优化(Particle Swarm Optimization,PSO)算法优化超限学习机(Extreme Learning Machine,ELM)算法的神经网络结构,动态调整PSO算法中的惯性权重,以提升算法的识别性能。采用所提算法对7种调制信号进行识别,实验结果表明,当信噪比大于2 dB时,所提算法对7种调制信号的识别正确率均达到100%。与相关算法相比,所提算法的识别效果较佳且更具有稳定性。 展开更多
关键词 改进粒子优化超限学习 调制信号识别 高阶累积量 归一化瞬时相位平均值 递归归一化瞬时相位平均值
下载PDF
基于聚类与粒子群极限学习机的航空发动机推力估计器设计 被引量:11
2
作者 宋汉强 李本威 +1 位作者 张赟 蒋科艺 《推进技术》 EI CAS CSCD 北大核心 2017年第6期1379-1385,共7页
针对航空发动机推力不可测,部件级模型求解推力精度不高、实时性差的问题,提出了基于快速寻找密度极点聚类与粒子群极限学习机的航空发动机推力估计方法。首先利用基于快速寻找密度极点的聚类算法对全工况范围内的台架试车数据聚类,然... 针对航空发动机推力不可测,部件级模型求解推力精度不高、实时性差的问题,提出了基于快速寻找密度极点聚类与粒子群极限学习机的航空发动机推力估计方法。首先利用基于快速寻找密度极点的聚类算法对全工况范围内的台架试车数据聚类,然后在每一个子类中,用粒子群极限学习机设计了子推力估计器。在子类推力估计过程中,为使网络拓扑结构最优,用粒子群算法寻找极限学习机的最优隐层神经元数目的方法。训练与测试表明,推力估计测试相对误差最大值为3.06‰,优于传统的RBF(7.25‰)与BP(14.84‰)神经网络方法,能够满足直接推力控制与机载在线实时状态评估的需求,且可将方法扩展到其他不可测参数的估计。 展开更多
关键词 航空发动 推力估计 快速寻找密度极点聚类 粒子极限学习 直接推力控制
下载PDF
改进粒子群-极限学习机模型在面板堆石坝运行期沉降预测中的应用 被引量:5
3
作者 燕乔 高名杨 +1 位作者 梁明浩 王硕 《水电能源科学》 北大核心 2021年第10期110-113,共4页
针对极限学习机(ELM)沉降预测模型中随机权值和阈值导致部分节点无效的问题,引入改进粒子群算法(IPSO)优化极限学习机的参数,构建基于改进粒子群-极限学习机算法的面板堆石坝运行期沉降预测模型,并将其应用于某完建的面板堆石坝运行期... 针对极限学习机(ELM)沉降预测模型中随机权值和阈值导致部分节点无效的问题,引入改进粒子群算法(IPSO)优化极限学习机的参数,构建基于改进粒子群-极限学习机算法的面板堆石坝运行期沉降预测模型,并将其应用于某完建的面板堆石坝运行期沉降预测中。结果表明,与未优化的极限学习机预测模型和统计回归预测模型的拟合预测结果相比,经改进粒子群算法优化后的极限学习机预测模型在测点上的拟合精度更高,且由于引入改进粒子群算法后,极限学习机在满足精度条件下所需预设的隐含层神经元数更少,这可极大地降低模型网络的复杂度,避免模型在训练中出现过拟合现象;三个模型中IPSO-ELM模型的泛化能力更好,预测结果更精确、稳定。 展开更多
关键词 面板堆石坝 改进粒子-极限学习(IPSO-ELM) 运行期 沉降预测模型
下载PDF
基于粒子群算法优化极限学习机的无源目标定位算法 被引量:2
4
作者 傅彬 《计算机应用与软件》 CSCD 2015年第11期325-328,共4页
为了提高目标定位精度,提出一种基于粒子群算法优化极限学习机的无源目标定位算法。首先通过位置信息场采集目标的相关信息,然后利用极限学习机对位置信息场与目标位置之间的非映射关系进行拟合,同时采用粒子群算法对极限学习机参数进... 为了提高目标定位精度,提出一种基于粒子群算法优化极限学习机的无源目标定位算法。首先通过位置信息场采集目标的相关信息,然后利用极限学习机对位置信息场与目标位置之间的非映射关系进行拟合,同时采用粒子群算法对极限学习机参数进行优化,最后在Matlab 2009平台进行仿真对比实验。结果表明,相对于其他目标定位算法,该算法提高了目标定位的精度,更加适合于复杂环境下的目标定位。 展开更多
关键词 位置信息场 目标定位粒子优化算法极限学习
下载PDF
基于K-均值聚类与粒子群核极限学习机的推力估计器设计 被引量:6
5
作者 赵姝帆 李本威 +2 位作者 宋汉强 逄珊 朱飞翔 《推进技术》 EI CAS CSCD 北大核心 2019年第2期259-266,共8页
鉴于航空发动机直接推力控制与健康管理需要高精度及高实时性的推力估计器,提出了一种基于K-均值聚类与粒子群优化的核极限学习机推力估计方法。采用K-均值聚类对全工况范围内的测量数据进行聚类,在每一个子类中,通过核极限学习机建立... 鉴于航空发动机直接推力控制与健康管理需要高精度及高实时性的推力估计器,提出了一种基于K-均值聚类与粒子群优化的核极限学习机推力估计方法。采用K-均值聚类对全工况范围内的测量数据进行聚类,在每一个子类中,通过核极限学习机建立推力估计器,采用粒子群算法对核极限学习机的核参数和惩罚系数进行优化,利用了核极限学习机稳定性好、非线性拟合能力强的特点,实现了对发动机推力的估计。经涡扇发动机台架试车数据训练与测试表明,本推力估计方法平均预测时间为0.27ms,实时性满足机载在线状态评估和直接推力控制需求,且在估计精度上较现有方法存在一定优势。 展开更多
关键词 航空发动 推力估计器 K-均值聚类 粒子核极限学习 直接推力控制
下载PDF
基于PSO-ELM的变压器油纸绝缘状态无损评估方法 被引量:1
6
作者 张德文 张健 +3 位作者 曲利民 吴迪星 刘贺千 张明泽 《电力工程技术》 北大核心 2024年第3期201-208,共8页
油浸式电力变压器作为电网的重要组成部分,其可靠运行至关重要。针对变压器长期运行后无法定量评估其绝缘状态的问题,文中开展了油纸绝缘模型的加速老化及受潮试验,探究了油纸绝缘老化及受潮程度对其回复电压曲线的影响规律,并提出采用... 油浸式电力变压器作为电网的重要组成部分,其可靠运行至关重要。针对变压器长期运行后无法定量评估其绝缘状态的问题,文中开展了油纸绝缘模型的加速老化及受潮试验,探究了油纸绝缘老化及受潮程度对其回复电压曲线的影响规律,并提出采用粒子群优化-极限学习机(particle swarm optimization-extreme learning machine,PSO-ELM)算法的参数预测方法,实现了基于回复电压曲线特征参量的油纸绝缘老化与受潮状态量化评估。由油纸绝缘模型理化性能分析的对比结果可知,基于PSO-ELM方法的预测值精度远高于传统ELM方法,油纸绝缘内含水率及纸板聚合度预测的绝对误差范围分别小于±0.4%、±30。 展开更多
关键词 油浸式变压器 油纸绝缘 回复电压 粒子优化-极限学习(PSO-ELM)算法 状态评估 无损检测
下载PDF
ACO-ELM与CFSFDP结合的机载动力系统参数估计 被引量:1
7
作者 孟蕾 许爱强 牛景华 《现代防御技术》 北大核心 2017年第2期172-176,216,共6页
针对机载动力系统测试数据的不确定性,求解参数实时性差的问题,提出了基于快速寻找密度极点聚类与蚁群极限学习机的机载动力系统的参数估计方法。首先利用基于寻找密度极点的聚类算法对全工况范围内的测试数据进行聚类,然后在每一个子... 针对机载动力系统测试数据的不确定性,求解参数实时性差的问题,提出了基于快速寻找密度极点聚类与蚁群极限学习机的机载动力系统的参数估计方法。首先利用基于寻找密度极点的聚类算法对全工况范围内的测试数据进行聚类,然后在每一个子类中用极限学习机设计了子参数估计器,并用蚁群算法寻找极限学习机的最优隐层神经元数目。训练与测试表明,参数估计测试相对误差明显优于传统的RBF神经网络方法,且参数估计时间能够满足机载在线实时状态评估的需求,该方法可应用到其他不可测参数的估计。 展开更多
关键词 飞行器 推力 参数估计 快速寻找密度极点聚类 极限学习
下载PDF
基于卷积神经网络的人群突散异常行为检测 被引量:4
8
作者 徐桂菲 王平 +3 位作者 罗凡波 王伟 胡军 宋秋霜 《计算机工程与设计》 北大核心 2022年第5期1389-1396,共8页
为检测人群突散异常,提出一种基于卷积神经网络的人群突散异常行为检测方法。对于人群中的个体使用改进的多尺度卷积神经网络(MCNN)预测人群中每一个个体头部的坐标位置;根据提取出来的坐标点计算人群平均动能、人群密度值以及人群分布... 为检测人群突散异常,提出一种基于卷积神经网络的人群突散异常行为检测方法。对于人群中的个体使用改进的多尺度卷积神经网络(MCNN)预测人群中每一个个体头部的坐标位置;根据提取出来的坐标点计算人群平均动能、人群密度值以及人群分布熵这3种人群运动状态特征值,以此减少计算量;将3种运动状态特征值放入基于差分进化粒子群优化的极限学习机(DE-PSO-ELM)中进行训练预测,得到人群运动状态,实现人群突散异常行为的检测。仿真结果表明,该算法对人群突散异常行为检测有较好的效果,检测准确率达到99.75%。 展开更多
关键词 突散异常检测 平均动能 密度值 分布熵 差分进化粒子优化的极限学习
下载PDF
基于LMD云模型与PSO-KELM的齿轮箱故障诊断 被引量:3
9
作者 赵小惠 谭琦 +3 位作者 胡胜 杨文彬 郇凯旋 张智杰 《机械传动》 北大核心 2023年第2期157-163,共7页
由于齿轮箱故障振动信号具有非平稳性与不确定性的特点,导致齿轮箱故障诊断精度较低。针对该问题提出一种基于局部均值分解(LMD)云模型特征提取结合粒子群优化(PSO)核极限学习机(KELM)的齿轮箱故障诊断方法。首先,将故障振动信号用LMD... 由于齿轮箱故障振动信号具有非平稳性与不确定性的特点,导致齿轮箱故障诊断精度较低。针对该问题提出一种基于局部均值分解(LMD)云模型特征提取结合粒子群优化(PSO)核极限学习机(KELM)的齿轮箱故障诊断方法。首先,将故障振动信号用LMD分解得到若干PF分量,并利用相关系数原则筛选出相关性较高的PF分量;其次,在云模型中输入筛选后的PF分量,采用逆向云发生器对特征向量进行提取并输入到PSO-KELM中进行故障诊断;最后,利用QPZZ-Ⅱ实验台齿轮箱实测数据对该方法进行了性能分析。结果表明,该方法识别精度为97.65%,与多种方法进行对比,该方法具备最佳识别性能。 展开更多
关键词 齿轮箱 故障诊断 局部均值分解 云模型 粒子优化核极限学习
下载PDF
人工智能辅助城市规划 被引量:80
10
作者 吴志强 《时代建筑》 2018年第1期6-11,共6页
城市规划中的人工智能应用是城市规划学科的时代标志性变革。文章阐述了人工智能与城市规划两个学科在发展中的关系、互为推动力的切入点、未来价值取向的发展方向等认知要点,预测了下一代人工智能的技术突破将为城市研究和城市规划带... 城市规划中的人工智能应用是城市规划学科的时代标志性变革。文章阐述了人工智能与城市规划两个学科在发展中的关系、互为推动力的切入点、未来价值取向的发展方向等认知要点,预测了下一代人工智能的技术突破将为城市研究和城市规划带来的巨大变革。作者以其工作小组在智能数据捕捉、城市功能智能配置、城市形态智能设计等方面的实际应用案例,对人工智能辅助城市规划的前沿动态做出了诠释。 展开更多
关键词 下一代人工智能(2.0) 城市规律 群机学习 共智 大数据 大智移云 捕捉 智能配置
下载PDF
粳稻冠层叶绿素含量PSO-ELM 高光谱遥感反演估算 被引量:7
11
作者 于丰华 冯帅 +3 位作者 赵依然 王定康 邢思敏 许童羽 《华南农业大学学报》 CAS CSCD 北大核心 2020年第6期59-66,共8页
【目的】叶绿素含量是表征粳稻生长状态的重要指示信息,利用无人机高光谱遥感技术及时获取区域尺度的粳稻叶绿素含量。【方法】以2016—2017年沈阳农业大学辽中水稻实验站粳稻无人机遥感试验数据为基础,利用连续投影算法(SPA)进行有效... 【目的】叶绿素含量是表征粳稻生长状态的重要指示信息,利用无人机高光谱遥感技术及时获取区域尺度的粳稻叶绿素含量。【方法】以2016—2017年沈阳农业大学辽中水稻实验站粳稻无人机遥感试验数据为基础,利用连续投影算法(SPA)进行有效波段的提取,提取的特征波段分别为410、481、533、702和798 nm。将提取出的特征波段作为输入,利用极限学习机(ELM)和粒子群优化的极限学习机(PSO-ELM)分别建立粳稻冠层叶绿素含量反演模型。在PSO-ELM模型中,针对PSO算法的种群规模(p)、惯性权重(w)、学习因子(C1、C2)、速度位置相关系数(m)这5个参数进行了优化。【结果】确定了最优参数:p为80,w为0.9~0.3线性递减,C1和C2分别为2.80和1.10,m为0.60。利用优化后的ELM和PSO-ELM所建立的粳稻冠层叶绿素含量模型的决定系数分别为0.734和0.887,均方根误差分别为1.824和0.783。【结论】利用优化后的PSO-ELM建立的粳稻叶绿素含量反演模型精度要明显高于单纯利用ELM建立的反演模型,前者具有较好的粳稻叶绿素含量反演能力。本研究为东北粳稻叶绿素含量反演无人机遥感诊断提供了数据支撑和应用基础。 展开更多
关键词 无人 叶绿素含量 粳稻 高光谱遥感 粒子优化极限学习
下载PDF
基于电子舌的掺假羊奶快速定量预测模型 被引量:7
12
作者 韩慧 王志强 +3 位作者 李彩虹 马泽亮 国婷婷 殷廷家 《食品与机械》 CSCD 北大核心 2018年第12期53-56,共4页
为实现对掺假羊奶的快速、客观辨别,模仿人体味觉感知机理研制了一套便携式电子舌检测系统,并建立了一种能够快速鉴别掺假羊奶的新方法。系统检测时,首先对样本溶液进行大幅脉冲扫描,用以获取掺假羊奶的"指纹"信息,然后利用... 为实现对掺假羊奶的快速、客观辨别,模仿人体味觉感知机理研制了一套便携式电子舌检测系统,并建立了一种能够快速鉴别掺假羊奶的新方法。系统检测时,首先对样本溶液进行大幅脉冲扫描,用以获取掺假羊奶的"指纹"信息,然后利用离散小波变换(discrete wavelet transform,DWT)对"指纹"数据中的特征信息进行提取,最后在此基础上,采用主成分分析(principal component analysis,PCA)方法对不同掺假比例的羊奶进行定性辨别。采用粒子群优化极限学习机(Particle swarm optimization extreme learning machine,PSO-ELM)对不同掺假比例的羊奶进行了定量预测。通过试验数据得出,PCA对6种不同掺假比例的羊奶区分达到100%,区分效果好。PSO-ELM羊奶纯度预测模型拟合曲线非常接近实测值曲线,因此采用PSO-ELM方法建立掺假羊奶纯度定量预测模型具有较高的预测精度。 展开更多
关键词 电子舌 羊奶掺假 牛奶 主成分分析 粒子优化极限学习 预测模型
下载PDF
基于复杂度的通信辐射源目标识别方法 被引量:4
13
作者 陈小惠 彭杰 薛毓楠 《国外电子测量技术》 北大核心 2021年第5期22-26,共5页
针对现在通信辐射源个体识别方法的特征难以提取、计算复杂及识别率低等问题。提出了一种基于复杂度的通信辐射源目标识别方法。首先信号进行奇异值分解(SVD)降噪处理,从熵值和分形维数两个复杂度方向分析细微信号所带来的变化,通过对... 针对现在通信辐射源个体识别方法的特征难以提取、计算复杂及识别率低等问题。提出了一种基于复杂度的通信辐射源目标识别方法。首先信号进行奇异值分解(SVD)降噪处理,从熵值和分形维数两个复杂度方向分析细微信号所带来的变化,通过对比分析选择了样本熵、排列熵和盒维数作为特征参数;然后使用云自适应粒子群(CAPSO)的算法,优化极限学习机的阈值和连接权值,提高神经网络的分类预测精度,完成了辐射源个体的识别。仿真结果表明该方法在较低的信噪比环境下的识别率高达95%以上。 展开更多
关键词 通信辐射源 复杂度 云粒子优化极限学习 识别率
下载PDF
基于VMD-ICMSE和半监督判别SOINN L-Isomap的滚动轴承故障诊断 被引量:3
14
作者 戚晓利 王振亚 +2 位作者 吴保林 叶绪丹 潘紫微 《振动与冲击》 EI CSCD 北大核心 2020年第4期252-260,共9页
针对从滚动轴承非线性、非平稳振动信号中提取故障特征困难的问题,提出一种基于半监督判别自组织增量学习神经网络界标点的等度规映射(SSDSL-Isomap)的滚动轴承故障诊断方法。利用基于变分模态分解的改进复合多尺度样本熵(VMD-ICMSE)从... 针对从滚动轴承非线性、非平稳振动信号中提取故障特征困难的问题,提出一种基于半监督判别自组织增量学习神经网络界标点的等度规映射(SSDSL-Isomap)的滚动轴承故障诊断方法。利用基于变分模态分解的改进复合多尺度样本熵(VMD-ICMSE)从复杂域提取振动信号的故障特征,构建高维故障特征集;采用SSDSL-Isomap方法对高维故障特征集进行维数约简,提取出利于识别的低维、敏感故障特征子集;应用粒子群优化极限学习机(PSO-ELM)分类器对低维故障特征进行故障识别,判别故障类型。VMD-ICMSE方法集成了VMD自适应分解非线性信号与ICMSE衡量时间序列复杂性程度的优势,提高故障特征提取能力;SSDSL-Isomap方法综合了全局流形结构、半监督型双约束图构建以及SOINN界标点选取的优点,增强故障分类能力。调心球轴承故障诊断实验分析结果表明,该方法对实验数据的故障识别率达到100%。 展开更多
关键词 故障诊断 滚动轴承 SSDSL-Isomap 变分模态分解(VMD) 改进复合多尺度熵(ICMSE) 粒子优化极限学习(PSO-ELM)
下载PDF
基于三维光学指纹和NPSO-KELM的GIL局部放电定位方法 被引量:13
15
作者 臧奕茗 王辉 +2 位作者 钱勇 盛戈皞 江秀臣 《中国电机工程学报》 EI CSCD 北大核心 2020年第20期6754-6763,共10页
气体绝缘金属封闭输电线路中局部放电的有效检测及定位对于及时发现绝缘缺陷、提高检修效率至关重要。目前,局部放电光学检测作为一种有效的局放检测方法,具有良好的研究及应用前景。针对GIL气室轴向距离较长、局放源定位困难的问题,提... 气体绝缘金属封闭输电线路中局部放电的有效检测及定位对于及时发现绝缘缺陷、提高检修效率至关重要。目前,局部放电光学检测作为一种有效的局放检测方法,具有良好的研究及应用前景。针对GIL气室轴向距离较长、局放源定位困难的问题,提出一种基于三维光信号仿真指纹(three dimensional-optical signal simulation fingerprint,3D-OSSF)和非线性粒子群-核极限学习机(nonlinear particle swarm optimization-kernel extreme learning machine,NPSO-KELM)的定位方法,能够实现局放源的精确定位。该方法将光学仿真数据引入局放源定位中,克服了常规基于指纹的定位方法需要采集大量现场实验数据的难题。通过建立与实验GIL尺寸完全相同的仿真模型,获得不同位置的局放源光学仿真信号,构建包含坐标信息的光学定位仿真指纹库。继而通过NPSO算法对KELM模型进行优化,利用优化得到的NPSO-KELM模型将实测局放光学指纹与指纹库进行模式匹配,得到相应的局放源空间坐标。实验结果表明,该方法的平均定位误差小于lcm,能实现GIL中局放源的精确定位,定位效果明显优于常规KELM算法和BPNN算法。 展开更多
关键词 局部放电 GIL 定位算法 三维光信号仿真指纹 光学仿真指纹库 非线性粒子–核极限学习
下载PDF
PSO-ELM在低压系统短路电流峰值预测中的应用 被引量:8
16
作者 唐玲玲 缪希仁 庄胜斌 《福州大学学报(自然科学版)》 CAS 北大核心 2020年第4期471-478,共8页
在短路电流早期检测的基础上,提出一种基于粒子群优化极端学习机(PSO-ELM)的短路电流峰值预测方法.利用短路电流暂态特性分析确定预测模型的输入特征量,采用粒子群算法对极端学习机的输入权值和隐层偏置进行优化,最后,将提出的预测算法... 在短路电流早期检测的基础上,提出一种基于粒子群优化极端学习机(PSO-ELM)的短路电流峰值预测方法.利用短路电流暂态特性分析确定预测模型的输入特征量,采用粒子群算法对极端学习机的输入权值和隐层偏置进行优化,最后,将提出的预测算法应用于低压多层级实验平台,并且与传统BP、ELM算法进行比较.实验结果表明,基于PSO-ELM模型的短路电流峰值预测方法能够在全相角范围内准确地预测短路电流峰值,可作为低压多层级系统全选择性保护的短路故障预测算法. 展开更多
关键词 低压系统 短路电流 峰值预测 粒子优化极端学习 全选择性保护
下载PDF
Yttrium-90 transarterial radioembolization versus conventional transarterial chemoembolization for patients with hepatocellular carcinoma:a systematic review and meta-analysis 被引量:3
17
作者 Yi Yang Tongguo Si 《Cancer Biology & Medicine》 SCIE CAS CSCD 2018年第3期299-310,共12页
Objective: To compare the effects and safety of conventional transarterial chemoembolization(c TACE) and yttrium-90 transarterial radioembolization [TARE(90 Y)] for hepatocellular carcinoma(HCC)Methods: Nine high-qual... Objective: To compare the effects and safety of conventional transarterial chemoembolization(c TACE) and yttrium-90 transarterial radioembolization [TARE(90 Y)] for hepatocellular carcinoma(HCC)Methods: Nine high-quality observational studies, one low bias-risk randomized controlled trial(RCT), and one moderate biasrisk RCT included 1,652 patients [c TACE, 1,124; TARE(90 Y), 528], from whom data were extracted for this systematic review and meta-analysis.Results: The extracted study outcomes included 1-year and 2-year overall survival(OS) rates, objective responses(ORs), and serious adverse events(AEs). 1-year OS rates: OR = 0.939, 95 % CI: 0.705-1.251, P = 0.66. 2-year OS rates: overall pooled OR =0.641, 95% CI: 0.382-1.075, P = 0.092; observational study subgroup OR = 0.575, 95% CI: 0.336-0.984, P = 0.043; RCT subgroup OR* = 0.641, 95% CI: 0.382-1.075, P = 0.346. OR: overall pooled OR = 0.781, 95% CI: 0.454-1.343, P = 0.371; m RECIST subgroup OR = 0.584, 95 % CI: 0.349-0.976, P = 0.040; WHO subgroup OR = 1.065; 95% CI: 0.500-2.268, P = 0.870. Serious AEs: overall pooled RR = 1.477, 95% CI: 0.864-2.526, P = 0.154; RCT subgroup RR = 0.680, 95% CI: 0.325-1.423, P = 0.306; observational study subgroup RR = 1.925; 95 % CI: 0.978-3.788, P = 0.058.Conclusions: TARE(90 Y) increased 2-year OS rates in the observational subgroup and resulted in better OR rates, according to m RECIST criteria, in comparison with c TACE. Furthermore, a lower risk of AEs was observed for TARE(90 Y) than for c TACE. 展开更多
关键词 Hepatocellular carcinoma conventional transarterial chemoembolization transarterial radioembolization yttrium-90
下载PDF
双层PSO-ELM融合室内定位算法 被引量:6
18
作者 徐岩 李宁宁 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2021年第1期61-68,共8页
随着基于位置服务需求的增长,室内定位成为国内外学者研究的重点领域.研究发现采用多传感器信息融合方法可以提高定位准确度,目前人们普遍认为利用多传感器的互补特性,结合各融合算法提升导航系统的整体精度是室内定位领域未来的发展趋... 随着基于位置服务需求的增长,室内定位成为国内外学者研究的重点领域.研究发现采用多传感器信息融合方法可以提高定位准确度,目前人们普遍认为利用多传感器的互补特性,结合各融合算法提升导航系统的整体精度是室内定位领域未来的发展趋势.本文提出一种基于双层粒子群极限学习机(PSO-ELM)神经网络的融合视觉和惯性信息的室内定位算法.第1层粒子群极限学习机(PSO-ELM)引入图像模糊判断来解决采集图像模糊时视觉定位算法误差大的问题,并计算出全局最优仿射变换矩阵作为粒子群极限学习机(PSO-ELM)的输入.同时,提出了一种基于视觉静态反馈和惯性特性的漂移校正方法来有效控制惯性导航系统(INS)的误差累积.第2层粒子群极限学习机(PSO-ELM)神经网络用于融合第1层粒子群极限学习机(PSO-ELM)获得的视觉定位结果和漂移校正后获得的惯性定位结果.将本算法所得融合后的定位结果分别与改进后的惯性定位结果和视觉定位结果进行比较,实验结果表明融合后的效果要优于单一算法的实验效果,定位精度和稳定性均得到提升.同时通过对比实验证明了本算法在存在外界干扰时也能保持良好的定位精度,具有较强的鲁棒性. 展开更多
关键词 室内定位 数据融合 视觉导航系统 惯性导航系统 粒子优化极限学习
下载PDF
基于EEMD-HW-PSO-ELM耦合模型的排土场边坡位移预测模型 被引量:3
19
作者 康恩胜 赵泽熙 孟海东 《黄金科学技术》 CSCD 2022年第4期594-602,共9页
为了准确预测小样本、非线性特点的排土场边坡位移,提出了一种基于经验模态分解法、三次指数平滑法和粒子群优化极限学习机的EEMD-HW-PSO-ELM边坡位移组合预测模型。以伊敏露天矿排土场GPS位移监测数据为例,验证该模型的有效性。研究结... 为了准确预测小样本、非线性特点的排土场边坡位移,提出了一种基于经验模态分解法、三次指数平滑法和粒子群优化极限学习机的EEMD-HW-PSO-ELM边坡位移组合预测模型。以伊敏露天矿排土场GPS位移监测数据为例,验证该模型的有效性。研究结果表明:EEMD模型分解后的边坡位移时间序列包括4个IMF分量和1个余量,将分解后的数据重构为趋势项和波动项,物理意义明确。分别选择三次指数平滑法和粒子群优化极限学习机预测趋势项和波动项位移,将分项预测结果的等权叠加值作为最终预测结果,预测值的平均相对误差为0.38%,均方根误差为1.15。选择了BP模型和Elman模型进行对比预测,结果表明组合预测模型的预测效果较好,能够为边坡安全管理提供理论依据。 展开更多
关键词 排土场 边坡位移 耦合模型 集成经验模态分解 三次指数平滑法 粒子优化极限学习
下载PDF
改进多元层次波动色散熵及其在滚动轴承故障诊断中的应用 被引量:12
20
作者 周付明 杨小强 +2 位作者 申金星 刘武强 刘小林 《振动与冲击》 EI CSCD 北大核心 2021年第22期167-174,共8页
针对滚动轴承振动信号故障特征难以提取以及单通道振动信号分析易存在故障信息缺漏的问题,提出一种新的衡量多通道时间序列动态特征的方法——改进多元层次波动色散熵(modified multivariate hierarchical fluctuation dispersion entro... 针对滚动轴承振动信号故障特征难以提取以及单通道振动信号分析易存在故障信息缺漏的问题,提出一种新的衡量多通道时间序列动态特征的方法——改进多元层次波动色散熵(modified multivariate hierarchical fluctuation dispersion entropy,MMHFDE),将其用于提取滚动轴承多通道振动信号中的故障特征,在此基础上提出一种基于MMHFDE,最大相关最小冗余(max-relevance and min-redundancy,mRMR)和粒子群优化核极限学习机(particle swarm optimization kernel extreme learning machine,PSO-KELM)的滚动轴承故障诊断新方法。使用MMHFDE提取滚动轴承不同状态的故障特征,而后采用mRMR从得到的故障特征中筛选敏感特征构成敏感特征向量;将敏感特征向量输入到基于PSO-KELM构建的故障分类器中进行故障识别。由试验结果可知,提出的方法可以有效识别滚动轴承不同故障状态。 展开更多
关键词 改进多元层次波动色散熵(MMHFDE) 最大相关最小冗余(mRMR) 粒子优化核极限学习(PSO-KELM) 滚动轴承 故障诊断
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部