期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于非凸低秩张量分解和群稀疏总变分的高光谱混合噪声图像恢复
1
作者 徐光宪 王泽民 马飞 《红外技术》 CSCD 北大核心 2024年第9期1025-1034,共10页
高光谱图像(Hyperspectral Image,HSI)在采集的过程中会被大量混合噪声污染,会影响遥感图像后续应用的性能,因此从混合噪声中恢复干净的HSI成为了重要的预处理过程。在本文中,提出了一种基于非凸低秩张量分解和群稀疏总变分正则化的高... 高光谱图像(Hyperspectral Image,HSI)在采集的过程中会被大量混合噪声污染,会影响遥感图像后续应用的性能,因此从混合噪声中恢复干净的HSI成为了重要的预处理过程。在本文中,提出了一种基于非凸低秩张量分解和群稀疏总变分正则化的高光谱混合噪声图像恢复模型;一方面,采用对数张量核范数来逼近HSI的低秩特性,可以利用高光谱数据固有的张量结构,同时减少对较大奇异值的收缩以保留图像更多细节特征;另一方面,采用群稀疏总变分正则化来增强HSI的空间稀疏性和相邻光谱间的相关性。并采用ADMM(Alternating Direction Multiplier Method)算法求解,实验证明该算法易于收敛。在模拟和真实的高光谱图像实验中,与其他方法相比,该方法在去除HSI混合噪声方面具有更好的性能。 展开更多
关键词 高光谱图像 混合噪声 非凸低秩张量 群稀疏总变分 图像恢复
下载PDF
基于群稀疏空间光谱总变分的高光谱混合噪声图像恢复
2
作者 徐光宪 王泽民 马飞 《激光与红外》 CAS CSCD 北大核心 2023年第9期1434-1440,共7页
高光谱图像(HSI)在采集的过程中,由于受到环境和传感器的影响,图像会被大量混合噪声污染,会影响遥感图像后续应用的性能,因此从混合噪声中恢复干净的HSI成为了重要的预处理过程。而一些现有的张量模型,在去除含有条带和死线的混合噪声时... 高光谱图像(HSI)在采集的过程中,由于受到环境和传感器的影响,图像会被大量混合噪声污染,会影响遥感图像后续应用的性能,因此从混合噪声中恢复干净的HSI成为了重要的预处理过程。而一些现有的张量模型,在去除含有条带和死线的混合噪声时,并不能取得很好的效果。为此,提出了一种基于群稀疏空间光谱总变分的高光谱混合噪声图像恢复算法(FRTCSSTV);为了避免过度平滑,该算法利用群稀疏空间光谱全变分正则化来增强空间谱维的稀疏性,同时为了保持HSI原有的结构,采用直接对张量纤维秩进行约束的方法来表示HSI的全局低秩。在模拟和真实的高光谱图像实验中,与其他模型相比,FRTCSSTV方法在去除含有条带和死线噪声的混合噪声时具有更好的性能。 展开更多
关键词 高光谱图像 混合噪声 张量纤维秩 稀疏空间光谱 图像恢复
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部