Hydrocarbon contamination may affect the soil microbial community, in terms of both diversity and function. A laboratory experiment was set-up, with a semi-arid control soil and the same soil but artificially contamin...Hydrocarbon contamination may affect the soil microbial community, in terms of both diversity and function. A laboratory experiment was set-up, with a semi-arid control soil and the same soil but artificially contaminated with diesel oil, to follow changes in the dominant species of the microbial community in the hydrocarbon-polluted soil via proteomics. Analysis of the proteins extracted from enriched cultures growing in Luria-Bertani (LB) media showed a change in the microbial community. The majority of the proteins were related to gIycolysis pathways, structural or protein synthesis. The results showed a relative increase in the complexity of the soil microbial community with hydrocarbon contamination, especially after 15 days of incubation. Species such as Ralstonia solanacearum, Synechococcus elongatus and different Clostridium sp. were adapted to contamination, not appearing in the control soil, although Bacillus sp. dominated the growing in LB in any of the treatments. We conclude that the identification of microbial species in soil extracts by culture-dependent proteomics is able to partially explain the changes in the diversity of the soil microbial community in hydrocarbon polluted semi-arid soils, but this information is much more limited than that provided by molecular methods.展开更多
基金Supported by the JAE-Program for Ph.D. Students of Spanish Research Council
文摘Hydrocarbon contamination may affect the soil microbial community, in terms of both diversity and function. A laboratory experiment was set-up, with a semi-arid control soil and the same soil but artificially contaminated with diesel oil, to follow changes in the dominant species of the microbial community in the hydrocarbon-polluted soil via proteomics. Analysis of the proteins extracted from enriched cultures growing in Luria-Bertani (LB) media showed a change in the microbial community. The majority of the proteins were related to gIycolysis pathways, structural or protein synthesis. The results showed a relative increase in the complexity of the soil microbial community with hydrocarbon contamination, especially after 15 days of incubation. Species such as Ralstonia solanacearum, Synechococcus elongatus and different Clostridium sp. were adapted to contamination, not appearing in the control soil, although Bacillus sp. dominated the growing in LB in any of the treatments. We conclude that the identification of microbial species in soil extracts by culture-dependent proteomics is able to partially explain the changes in the diversity of the soil microbial community in hydrocarbon polluted semi-arid soils, but this information is much more limited than that provided by molecular methods.