期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
单圈图和双圈图的群色数 被引量:1
1
作者 杨星星 《宿州学院学报》 2012年第5期6-7,共2页
若图G=(V,E),给定方向为D,A表示一个非平凡的阿贝尔群,F(G,A)表示映射f:E(G)→A的集合。若对任意f∈F(G,A)存在映射c:V(G)→A,使得G中的每一条有向边e=uυ∈E(G)(方向是u→υ)满足c(u)-c(v)≠f(e),这时说图G是A-可染的。使得图G在方向D... 若图G=(V,E),给定方向为D,A表示一个非平凡的阿贝尔群,F(G,A)表示映射f:E(G)→A的集合。若对任意f∈F(G,A)存在映射c:V(G)→A,使得G中的每一条有向边e=uυ∈E(G)(方向是u→υ)满足c(u)-c(v)≠f(e),这时说图G是A-可染的。使得图G在方向D下是A-可染的,A的最小阶数为图G的群色数,记为χg(G)。在分析单圈图和双圈图特性的基础上,讨论了它们的群色数。对于单圈图、双圈图可得出其群色数都是3。 展开更多
关键词 群色数 双圈图
下载PDF
伪-海临图的群色数
2
作者 杨星星 林永 《赤峰学院学报(自然科学版)》 2016年第17期4-5,共2页
若图G=(V,E),给定方向为D,A表示一个非平凡的且单位元为0的阿贝尔群,F(G,A)表示映射f:E(G)→A的集合.若对任意f∈F(G,A)存在映射c:V(G)→A,使得G中的每一条有向边e=uv∈E(G)(方向是u→v)满足c(u)-c(v)≠f(e),这时说图G是A-可染的.使得图... 若图G=(V,E),给定方向为D,A表示一个非平凡的且单位元为0的阿贝尔群,F(G,A)表示映射f:E(G)→A的集合.若对任意f∈F(G,A)存在映射c:V(G)→A,使得G中的每一条有向边e=uv∈E(G)(方向是u→v)满足c(u)-c(v)≠f(e),这时说图G是A-可染的.使得图G在方向D下是A-可染的,A的最小阶数为图G的群色数,记为χg(G).本文给出了伪-海临图的群色数不超过4. 展开更多
关键词 群色数 伪-海临图
下载PDF
群色临界图的一些性质 被引量:1
3
作者 徐丽琼 《福建师范大学学报(自然科学版)》 CAS CSCD 2004年第2期1-3,共3页
群色数χ1(G)是最小数m,使得对任意Abel群A,若|A|≥m,则G是A-可着色的.称G是群色临界的,若对于G的任一真子图H,有χ1(H)<χ1(G).研究了群色临界图的一些性质,给出某些群色临界图的刻划,证明了k群色临界图G的最小度为k-1,且若G是3群... 群色数χ1(G)是最小数m,使得对任意Abel群A,若|A|≥m,则G是A-可着色的.称G是群色临界的,若对于G的任一真子图H,有χ1(H)<χ1(G).研究了群色临界图的一些性质,给出某些群色临界图的刻划,证明了k群色临界图G的最小度为k-1,且若G是3群色临界图当且仅当G是圈. 展开更多
关键词 群色数 临界图
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部