Total and root-severed soil respiration rates for five plots set up 50 m apart in a Betula ermanii Cham.-dark coniferous forest ecotone on a north-facing slope of the Changbai Mountains, China, were measured to evalua...Total and root-severed soil respiration rates for five plots set up 50 m apart in a Betula ermanii Cham.-dark coniferous forest ecotone on a north-facing slope of the Changbai Mountains, China, were measured to evaluate the seasonal variations of soil respiration, to assess the effect of soil temperature and water content on soil respiration, and to estimate the relative contributions of root respiration to the total soil respiration. PVC cylinders in each of 5 forest types of a B. ermanii-dark coniferous forest ecotone were used to measure soil respirations both inside and outside of the cylinders. The contribution of roots to the total soil respiration rates ranged from 12.5% to 54.6%. The mean contribution of roots for the different plots varied with the season, increasing from 32.5% on June 26 to 36.6% on August 3 and to 41.8% on October 14. In addition, there existed a significant (P < 0.01) logarithmic relationship between total soil respiration rate and soil temperature at 5 cm soil depth. Also, a similar trend was observed for the soil respiration and soil water content at the surface (0-5 cm) during the same period of time.展开更多
There is a need to simultaneously preserve evidence of interactions between the biological community and soil structural properties of a soil in as near an intact (natural) state as possible. Three dehydration techn...There is a need to simultaneously preserve evidence of interactions between the biological community and soil structural properties of a soil in as near an intact (natural) state as possible. Three dehydration techniques were implemented and assessed for their ability to minimise disruption of both biological and physical properties of the same arable soil sample. Dehydration techniques applied until samples were at constant weight were i) air-drying at 20℃ (AD); ii) -80 ℃ freeze for 24 h, followed by freeze-drying (-80FD); and iii) liquid nitrogen snap freeze, followed by freeze-drying (LNPD) and were compared to a moist control. Physical structure was determined and quantified in three dimensions using X-ray computed tomography and microbial phenotypic community composition was assessed using phospholipid fatty acid (PLPA) profiling. This study confirms that any form of dehydration, when preparing soil for simultaneous biological and physical analysis, will alter the soil physical properties, and cause some change in apparent community structure. Freeze-drying (both the LNFD and -80FD treatments) was found to minimise disruption (when compared to the moist control soil) to both the soil physical properties and the community structure and is a preferable technique to air-drying which markedly alters the size and character of the pore network, as well as the phenotypic profile. The LNFD was the preferred treatment over the -80FD treatment as samples show low variability between replicates and a fast turn-around time between samples. Therefore snap freezing in liquid nitrogen, followed by freeze drying is the most appropriate form of dehydration when two sets of data, both physical and biological, need to be preserved simultaneously from a soil core.展开更多
Seagrass research in China is still in its infancy. Even though there has been progress recently, there is still a great deal of research needed to gain a better understanding of seagrass. In this article we review an...Seagrass research in China is still in its infancy. Even though there has been progress recently, there is still a great deal of research needed to gain a better understanding of seagrass. In this article we review and discuss the advances in seagrass research in China from two aspects: (1) seagrass species and their distribution; (2) seagrass research in China, including studies on their taxonomy, ecology, photosynthesis, applications in aquaculture, salt-tolerance mechanisms and other research topics. A total of 18 seagrass species belonging to 8 genera are distributed in nine provinces and regions in China (including Hong Kong and Taiwan), as well as the Xisha and Nansha Archipelagos. They can be divided into two groups: a North China Group and a South China Group. Based on the seagrass distribution, the Chinese mainland coast can be divided into three sections: North China Seagrass Coast, Middle China Seagrass Coast, and South China Seagrass Coast. Ecological studies include research on seagrass communities, nutrient cycling in seagrass ecosystems, genetic diversity, pollution ecology and research in the key regions of Shandong, Guangdong, Guangxi, and Hainan. Seagrass species and their locations, community structure, ecological evaluation, epiphytes, ecological functions and threats in the key regions are also summarized. Other studies have focused on remote sensing of seagrass, threatened seagrass species of China, and pollen morphology of Halophila ovalis.展开更多
Both nitrate((NO_3)^-) and soluble reactive phosphate((PO_4)^(3-)) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s.Within the same period in ...Both nitrate((NO_3)^-) and soluble reactive phosphate((PO_4)^(3-)) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s.Within the same period in the sea area,with surface salinity>30,(NO_3)^-concentration has shown an obvious increase,(PO_4)^(3-) has not changed greatly and dissolved reactive silica((SiO_3)^(2-)) has deceased dramatically.An examination of the elemental ratio of(NO_3)^-to(PO_4)^(3-) at the mouth of the Changjiang River did not show a systematic trend from the 1960s to 2000s largely because both nutrients increased simultaneously.In comparison,the elemental ratio of dissolved inorganic nitrogen(DIN) to(PO_4)^(3-) in surface seawater,with salinity>22,has shown a clearly increasing trend.Furthermore,an overall historical change of the(SiO_3)^(2-):(PO_4)^(3-) ratio has undergone a reverse trend in this area.Based on the changes of(SiO_3)^(2-):(PO_4)^(3-) and DIN:(PO_4)^(3-) ratios,we can conclude that an overall historical change of(SiO_3)^(2-):DIN ratio has decreased in this area from the 1950-1960s to 2000s.The argument that phytoplankton productivity in the Changjiang estuary has been enhanced by increasing nutrient input from the riverine transport was supported by these results.A comparative study analyzing the shift of phytoplankton composition from the mid-1980s to 2000s was also made.The results indicated that the average yearly percentage of diatom species in the Changjiang estuary has decreased from 84.6% during 1985-1986 to 69.8% during 2004-2005.Furthermore,the average yearly percentage of diatom abundance in the Changjiang estuary decreased from 99.5% during to 75.5% over the same time period,while the abundance of dinoflagellates has increased dramatically,from 0.7% to 25.4%.展开更多
Ecological and evolutionary studies on spiders have been featured prominently throughout the contemporary behavio- ral syndromes movement. Here we review the behavioral syndromes literature devoted to spiders, and ide...Ecological and evolutionary studies on spiders have been featured prominently throughout the contemporary behavio- ral syndromes movement. Here we review the behavioral syndromes literature devoted to spiders, and identify some ways in which behavioral syndromes can impact the function of spiders in ecological communities. We further highlight three general themes within the behavioral syndromes literature for which spiders have served as front running model systems: (1) how trait correlations beget performance trade-offs, (2) the influence that behavioral trait variants have on interspecific interactions and (3) mechanisms that aid in maintaining behavioral variation within-and among-populations. Research on behavioral syndromes con-tinues to grow at an impressive rate, and we feel the success of behavioral syndromes studies in spiders bodes well for their con-tinued prominence.展开更多
The mechanism of vegetation restoration on degraded karst regions has been a research focus of soil science and ecology for the last decade.In an attempt to preferably interpret the soil microbiological characteristic...The mechanism of vegetation restoration on degraded karst regions has been a research focus of soil science and ecology for the last decade.In an attempt to preferably interpret the soil microbiological characteristic variation associated with vegetation restoration and further to explore the role of soil microbiology in vegetation restoration mechanism of degraded karst regions,we measured microbial biomass C and basal respiration in soils during vegetation restoration in Zhenfeng County of southwestern Guizhou Province,China.The community level physiological profiles(CLPP) of the soil microbial community to were estimated determine if vegetation changes were accompanied by changes in functioning of soil microbial communities.The results showed that soil microbial biomass C and microbial quotient(microbial biomass C/organic C) tended to increase with vegetation restoration,being in the order arboreal community stage > shrubby community stage > herbaceous community stage > bare land stage.Similar trend was found in the change of basal respiration(BR).The metabolic quotient(the ratio of basal respiration to microbial biomass,qCO 2) decreased with vegetation restoration,and remained at a constantly low level in the arboreal community stage.Analyses of the CLPP data indicated that vegetation restoration tended to result in higher average well color development,substrate richness,and functional diversity.Average utilization of specific substrate guilds was highest in the arboreal community stage.Principle component analysis of the CLPP data further indicated that the arboreal community stage was distinctly different from the other three stages.In conclusion,vegetation restoration improved soil microbial biomass C,respiration,and utilization of carbon sources,and decreased qCO 2,thus creating better soil conditions,which in turn could promote the restoration of vegetation on degraded karst regions.展开更多
With the rapid accumulation of high-throughput metagenomic sequencing data,it is possible to infer microbial species relations in a microbial community systematically.In recent years,some approaches have been proposed...With the rapid accumulation of high-throughput metagenomic sequencing data,it is possible to infer microbial species relations in a microbial community systematically.In recent years,some approaches have been proposed for identifying microbial interaction network.These methods often focus on one dataset without considering the advantage of data integration.In this study,we propose to use a similarity network fusion(SNF)method to infer microbial relations.The SNF efficiently integrates the similarities of species derived from different datasets by a cross-network diffusion process.We also introduce consensus k-nearest neighborhood(Ck-NN)method instead of k-NN in the original SNF(we call the approach CSNF).The final network represents the augmented species relationships with aggregated evidence from various datasets,taking advantage of complementarity in the data.We apply the method on genus profiles derived from three microbiome datasets and we find that CSNF can discover the modular structure of microbial interaction network which cannot be identified by analyzing a single dataset.展开更多
Silver nanoparticles (AgNPs) are widely used antimicrobial compounds; however, they may pose a threat to non-targeted bacteria in the environment. In this study high-throughput sequencing was used to investigate the...Silver nanoparticles (AgNPs) are widely used antimicrobial compounds; however, they may pose a threat to non-targeted bacteria in the environment. In this study high-throughput sequencing was used to investigate the effects of different concentrations of AgNPs (10, 50, and 100 mg kg-1) on soil microbial community structure during short-term (7 d) exposure. The amounts of Acidobacteria, Actinobacteria, Cyanobacteria, and Nitrospirae significantly decreased with increasing AgNP concentration; meanwhile, several other phyla (e.g., Proteobacteria and Planctomycetes) increased and dominated. Nitrosomonas europaea, a well-characterized ammonia- oxidizing bacterium, was used to study the sensitivity of bacteria to AgNPs and ionic silver (Ag+). Flow cytometry was used to monitor the toxicity of low (1 mg L-l), middle (10 mg L-l), and high concentrations (20 mg L-1) of AgNPs, as well as Ag+ (1 mg L-1) released into the medium from 20 mg L-1 concentration of AgNPs, towards N. europaea. After 12 h of exposure, the survival rate of N. europaea treated with 1 mg L-1 Ag+ was significantly lower than those treated with low (1 mg L-1) and middle concentrations (10 mg L-1) of AgNPs, but the survival rate in the treatment with high concentration (20 mg L-1) of AgNPs was much lower. Additionally, necrosis rates were higher in the treatment with 20 mg L-1 AgNPs. Electron microscopy showed that Ag+ caused serious damage to the cell wall of N. europaea, disintegrated the nucleoids, and condensed next to the cell membrane; however, dissolved Ag+ is only one of the antibacterial mechanisms of AgNPs.展开更多
Understanding how plant species richness influences the diversity of herbivorous and predatory/parasitic arthropods is central to community ecology.We explore the effects of crop species richness on the diversity of p...Understanding how plant species richness influences the diversity of herbivorous and predatory/parasitic arthropods is central to community ecology.We explore the effects of crop species richness on the diversity of pest insects and their natural enemies.Using data from a four-year experiment with five levels of crop species richness,we found that crop species richness significantly affected the pest species richness,but there were no significant effects on richness of the pests’natural enemies.In contrast,the species richness of pest insects significantly affected their natural enemies.These findings suggest a cascade effect where trophic interactions are strong between adjacent trophic levels,while the interactions between connected but nonadjacent trophic levels are weakened by the intermediate trophic level.High crop species richness resulted in a more stable arthropod community compared with communities in monoculture crops.Our results highlight the complicated cross-trophic interactions and the crucial role of crop diversity in the food webs of agro-ecosystems.展开更多
基金Project supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX1-SW-01) and theNational Natural Science Foundation of China (No. 30070158).
文摘Total and root-severed soil respiration rates for five plots set up 50 m apart in a Betula ermanii Cham.-dark coniferous forest ecotone on a north-facing slope of the Changbai Mountains, China, were measured to evaluate the seasonal variations of soil respiration, to assess the effect of soil temperature and water content on soil respiration, and to estimate the relative contributions of root respiration to the total soil respiration. PVC cylinders in each of 5 forest types of a B. ermanii-dark coniferous forest ecotone were used to measure soil respirations both inside and outside of the cylinders. The contribution of roots to the total soil respiration rates ranged from 12.5% to 54.6%. The mean contribution of roots for the different plots varied with the season, increasing from 32.5% on June 26 to 36.6% on August 3 and to 41.8% on October 14. In addition, there existed a significant (P < 0.01) logarithmic relationship between total soil respiration rate and soil temperature at 5 cm soil depth. Also, a similar trend was observed for the soil respiration and soil water content at the surface (0-5 cm) during the same period of time.
文摘There is a need to simultaneously preserve evidence of interactions between the biological community and soil structural properties of a soil in as near an intact (natural) state as possible. Three dehydration techniques were implemented and assessed for their ability to minimise disruption of both biological and physical properties of the same arable soil sample. Dehydration techniques applied until samples were at constant weight were i) air-drying at 20℃ (AD); ii) -80 ℃ freeze for 24 h, followed by freeze-drying (-80FD); and iii) liquid nitrogen snap freeze, followed by freeze-drying (LNPD) and were compared to a moist control. Physical structure was determined and quantified in three dimensions using X-ray computed tomography and microbial phenotypic community composition was assessed using phospholipid fatty acid (PLPA) profiling. This study confirms that any form of dehydration, when preparing soil for simultaneous biological and physical analysis, will alter the soil physical properties, and cause some change in apparent community structure. Freeze-drying (both the LNFD and -80FD treatments) was found to minimise disruption (when compared to the moist control soil) to both the soil physical properties and the community structure and is a preferable technique to air-drying which markedly alters the size and character of the pore network, as well as the phenotypic profile. The LNFD was the preferred treatment over the -80FD treatment as samples show low variability between replicates and a fast turn-around time between samples. Therefore snap freezing in liquid nitrogen, followed by freeze drying is the most appropriate form of dehydration when two sets of data, both physical and biological, need to be preserved simultaneously from a soil core.
基金Supported by Guangxi Science Foundation (No. 0832030)Scientific Research Fund of Guangxi University (2008)+1 种基金UNDP/GEF/SCCBD Project (SCCBD/CPR/02/31)Guangxi Key Lab Fund (No. 07109007)
文摘Seagrass research in China is still in its infancy. Even though there has been progress recently, there is still a great deal of research needed to gain a better understanding of seagrass. In this article we review and discuss the advances in seagrass research in China from two aspects: (1) seagrass species and their distribution; (2) seagrass research in China, including studies on their taxonomy, ecology, photosynthesis, applications in aquaculture, salt-tolerance mechanisms and other research topics. A total of 18 seagrass species belonging to 8 genera are distributed in nine provinces and regions in China (including Hong Kong and Taiwan), as well as the Xisha and Nansha Archipelagos. They can be divided into two groups: a North China Group and a South China Group. Based on the seagrass distribution, the Chinese mainland coast can be divided into three sections: North China Seagrass Coast, Middle China Seagrass Coast, and South China Seagrass Coast. Ecological studies include research on seagrass communities, nutrient cycling in seagrass ecosystems, genetic diversity, pollution ecology and research in the key regions of Shandong, Guangdong, Guangxi, and Hainan. Seagrass species and their locations, community structure, ecological evaluation, epiphytes, ecological functions and threats in the key regions are also summarized. Other studies have focused on remote sensing of seagrass, threatened seagrass species of China, and pollen morphology of Halophila ovalis.
基金Supported by the National Natural Science Foundation of China for Creative Research Groups(No.40821004)the High Technology Research and Development Program of China(863 Program)(No.2008AA09Z107)the National Basic Research Program of China(973 Program)(No.2010CB428706)
文摘Both nitrate((NO_3)^-) and soluble reactive phosphate((PO_4)^(3-)) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s.Within the same period in the sea area,with surface salinity>30,(NO_3)^-concentration has shown an obvious increase,(PO_4)^(3-) has not changed greatly and dissolved reactive silica((SiO_3)^(2-)) has deceased dramatically.An examination of the elemental ratio of(NO_3)^-to(PO_4)^(3-) at the mouth of the Changjiang River did not show a systematic trend from the 1960s to 2000s largely because both nutrients increased simultaneously.In comparison,the elemental ratio of dissolved inorganic nitrogen(DIN) to(PO_4)^(3-) in surface seawater,with salinity>22,has shown a clearly increasing trend.Furthermore,an overall historical change of the(SiO_3)^(2-):(PO_4)^(3-) ratio has undergone a reverse trend in this area.Based on the changes of(SiO_3)^(2-):(PO_4)^(3-) and DIN:(PO_4)^(3-) ratios,we can conclude that an overall historical change of(SiO_3)^(2-):DIN ratio has decreased in this area from the 1950-1960s to 2000s.The argument that phytoplankton productivity in the Changjiang estuary has been enhanced by increasing nutrient input from the riverine transport was supported by these results.A comparative study analyzing the shift of phytoplankton composition from the mid-1980s to 2000s was also made.The results indicated that the average yearly percentage of diatom species in the Changjiang estuary has decreased from 84.6% during 1985-1986 to 69.8% during 2004-2005.Furthermore,the average yearly percentage of diatom abundance in the Changjiang estuary decreased from 99.5% during to 75.5% over the same time period,while the abundance of dinoflagellates has increased dramatically,from 0.7% to 25.4%.
文摘Ecological and evolutionary studies on spiders have been featured prominently throughout the contemporary behavio- ral syndromes movement. Here we review the behavioral syndromes literature devoted to spiders, and identify some ways in which behavioral syndromes can impact the function of spiders in ecological communities. We further highlight three general themes within the behavioral syndromes literature for which spiders have served as front running model systems: (1) how trait correlations beget performance trade-offs, (2) the influence that behavioral trait variants have on interspecific interactions and (3) mechanisms that aid in maintaining behavioral variation within-and among-populations. Research on behavioral syndromes con-tinues to grow at an impressive rate, and we feel the success of behavioral syndromes studies in spiders bodes well for their con-tinued prominence.
基金Supported by the National Basic Research Program (973 Program) of China (No. 2006CB403206)the Key Project in the NationalScience & Technology Pillar Program in the Eleventh Five-year Plan Period of China (Nos. 2006BAC01A09 and 2006BAD03A1006)National Natural Science Foundation of China (No. 30872076)
文摘The mechanism of vegetation restoration on degraded karst regions has been a research focus of soil science and ecology for the last decade.In an attempt to preferably interpret the soil microbiological characteristic variation associated with vegetation restoration and further to explore the role of soil microbiology in vegetation restoration mechanism of degraded karst regions,we measured microbial biomass C and basal respiration in soils during vegetation restoration in Zhenfeng County of southwestern Guizhou Province,China.The community level physiological profiles(CLPP) of the soil microbial community to were estimated determine if vegetation changes were accompanied by changes in functioning of soil microbial communities.The results showed that soil microbial biomass C and microbial quotient(microbial biomass C/organic C) tended to increase with vegetation restoration,being in the order arboreal community stage > shrubby community stage > herbaceous community stage > bare land stage.Similar trend was found in the change of basal respiration(BR).The metabolic quotient(the ratio of basal respiration to microbial biomass,qCO 2) decreased with vegetation restoration,and remained at a constantly low level in the arboreal community stage.Analyses of the CLPP data indicated that vegetation restoration tended to result in higher average well color development,substrate richness,and functional diversity.Average utilization of specific substrate guilds was highest in the arboreal community stage.Principle component analysis of the CLPP data further indicated that the arboreal community stage was distinctly different from the other three stages.In conclusion,vegetation restoration improved soil microbial biomass C,respiration,and utilization of carbon sources,and decreased qCO 2,thus creating better soil conditions,which in turn could promote the restoration of vegetation on degraded karst regions.
基金supported in part by US National Science Foundation,Division of Industrial Innovation and Partnerships(1160960 and 1332024)Computing and Communication Foundations(0905291)+2 种基金National Natural Science Foundation of China(90920005,61170189)the Twelfth Five-year Plan of China(2012BAK24B01)National Social Science Funds of China(12&2D223,13&ZD183)
文摘With the rapid accumulation of high-throughput metagenomic sequencing data,it is possible to infer microbial species relations in a microbial community systematically.In recent years,some approaches have been proposed for identifying microbial interaction network.These methods often focus on one dataset without considering the advantage of data integration.In this study,we propose to use a similarity network fusion(SNF)method to infer microbial relations.The SNF efficiently integrates the similarities of species derived from different datasets by a cross-network diffusion process.We also introduce consensus k-nearest neighborhood(Ck-NN)method instead of k-NN in the original SNF(we call the approach CSNF).The final network represents the augmented species relationships with aggregated evidence from various datasets,taking advantage of complementarity in the data.We apply the method on genus profiles derived from three microbiome datasets and we find that CSNF can discover the modular structure of microbial interaction network which cannot be identified by analyzing a single dataset.
基金supported by the National Natural Science Foundation of China (No. 41430752)
文摘Silver nanoparticles (AgNPs) are widely used antimicrobial compounds; however, they may pose a threat to non-targeted bacteria in the environment. In this study high-throughput sequencing was used to investigate the effects of different concentrations of AgNPs (10, 50, and 100 mg kg-1) on soil microbial community structure during short-term (7 d) exposure. The amounts of Acidobacteria, Actinobacteria, Cyanobacteria, and Nitrospirae significantly decreased with increasing AgNP concentration; meanwhile, several other phyla (e.g., Proteobacteria and Planctomycetes) increased and dominated. Nitrosomonas europaea, a well-characterized ammonia- oxidizing bacterium, was used to study the sensitivity of bacteria to AgNPs and ionic silver (Ag+). Flow cytometry was used to monitor the toxicity of low (1 mg L-l), middle (10 mg L-l), and high concentrations (20 mg L-1) of AgNPs, as well as Ag+ (1 mg L-1) released into the medium from 20 mg L-1 concentration of AgNPs, towards N. europaea. After 12 h of exposure, the survival rate of N. europaea treated with 1 mg L-1 Ag+ was significantly lower than those treated with low (1 mg L-1) and middle concentrations (10 mg L-1) of AgNPs, but the survival rate in the treatment with high concentration (20 mg L-1) of AgNPs was much lower. Additionally, necrosis rates were higher in the treatment with 20 mg L-1 AgNPs. Electron microscopy showed that Ag+ caused serious damage to the cell wall of N. europaea, disintegrated the nucleoids, and condensed next to the cell membrane; however, dissolved Ag+ is only one of the antibacterial mechanisms of AgNPs.
基金supported by the National Natural Science Foundation of China (31030012)the National Key Technology Research & Development Program,China (2013CB127604)+2 种基金the Special Fund for Agro-scientific Research in the Public Interest,China (201103012)support from the National Research Foundation,South Africa (76912 and 81825)supported by the University of California Agricultural Experiment Station,Riverside,CA,USA
文摘Understanding how plant species richness influences the diversity of herbivorous and predatory/parasitic arthropods is central to community ecology.We explore the effects of crop species richness on the diversity of pest insects and their natural enemies.Using data from a four-year experiment with five levels of crop species richness,we found that crop species richness significantly affected the pest species richness,but there were no significant effects on richness of the pests’natural enemies.In contrast,the species richness of pest insects significantly affected their natural enemies.These findings suggest a cascade effect where trophic interactions are strong between adjacent trophic levels,while the interactions between connected but nonadjacent trophic levels are weakened by the intermediate trophic level.High crop species richness resulted in a more stable arthropod community compared with communities in monoculture crops.Our results highlight the complicated cross-trophic interactions and the crucial role of crop diversity in the food webs of agro-ecosystems.