The effects of surface cracks caused by underground coal mining on microhabitat in the rhizosphere of Artem&ia ordosias were studied based on field investigation and sample analysis. The results show that the amounts...The effects of surface cracks caused by underground coal mining on microhabitat in the rhizosphere of Artem&ia ordosias were studied based on field investigation and sample analysis. The results show that the amounts of microorganisms, enzyme activity and water content in soil vary with the biomass ofA. ordosias, and that the account exhibits in an order of large A. ordosias〉medium A. ordosias〉small A. ordosias. Surface cracks apparently decrease microbial quantities and enzymatic ac- tivities, and change the composition and structure of microbial community in the rhizosphere of A. ordosias. Surface cracks reduce water content and electrical conductivity, enhance the R/S (ratio of root and soil) of water content, electrical conductivity and pH value, and raise the content of Na and Pb in rhizosphere soil ofA. ordosicas, It can be concluded that the disturbance of underground coal mining on the microhabitat in the rhizosphere ofA. ordosica is obvious in the early days.展开更多
A large-scale bloom occurred from May to June in 2011 in sea area near Qinhuangdao of the Bohai Sea, leading to huge damage of the scallop culture industry. Similar blooms have been observed in this region for three y...A large-scale bloom occurred from May to June in 2011 in sea area near Qinhuangdao of the Bohai Sea, leading to huge damage of the scallop culture industry. Similar blooms have been observed in this region for three years. The causative species of the bloom, which dominated the phytoplankton community with the maximum cell density around 109 cell/L, could not be identified with morphological features due to the small cell size (-2 μm). A pigment analytical method was then adopted to analyze the pigment profile of the phytoplankton samples collected from the blooming sea area. It was found that pico-sized (〈2 μm), nano-sized (2-20 μm), and bulk phytoplankton samples had similar pigment profile, representing the pigment signature of the bloom-causative species. The major pigments detected included 19-butanoyloxyfucoxanthin (But-fuco), fucoxanthin (Fuco), diadinoxanthin (Diad) and chlorophyll a (Chl a), and high content of But-fuco was the most significant characteristics of the phytoplankton samples. Based on the pigment composition and content, the bloom-causative species could be tentatively identified as pelagophyte, "type 8" group of haptophyte, or silicoflagellate. Some unique features of the bloom, such as the extremely high cell density, small-sized and But-fuco containing cells, occurring in early summer, and the feeding-cessation effects on scallops, suggest it be a "brown tide" event similar to those reported in the east coast of the United States of America. The recurrent "brown tide" events and their dramatic impacts on the shellfish mariculture industry in QirLhuangdao need close attention in the coming years.展开更多
From May to August 2008, a large "green tide", consisting of the alga Ulva (Enteromorpha) prolifera, occurred in the Yellow Sea, China, affecting the local marine ecosystem and human activities. We investiga...From May to August 2008, a large "green tide", consisting of the alga Ulva (Enteromorpha) prolifera, occurred in the Yellow Sea, China, affecting the local marine ecosystem and human activities. We investigated the influence of the green tide on the microbial community in the surface seawater, at four sites from July to August 2008, using bacterial 16S rRNA gene clone libraries. We sequenced 228 clones of unique patterns identified by restriction fragment length polymorphism (RFLP) techniques. The results show that 228 sequenced clones fell into six bacterial phyla:Proteobacteria, Bacteroidetes, Cyanobacteria, Verrucomicrobia, Actinobacteria, and Planctomycetes. Alphaproteobacteria (33%), Gammaproteobacteria (25%), Bacteroidetes (23%) and Cyanobacteria (9%) dominated the assemblage. Comparison between samples collected in July (during the tide) and those collected in August (after the tide) showed that, in the microbial community, diversities of Alphaproteobacteria and Cyanobacteria increased after the tide, while those of Gammaproteobacteria and Bacteroidetes decreased. These results indicate that the green tide influenced the growth of some bacteria, and provide information for further studies on the interactions and relationships between U. prolifera and the bacterial community. This study suggests that microbial community analysis is a good approach to monitoring green tides.展开更多
Sulfate-reducing bacteria(SRB),which obtain energy from dissimilatory sulfate reduction,play a vital role in the carbon and sulfur cycles.The dissimilatory sulfite reductase(Dsr),catalyzing the last step in the sulfat...Sulfate-reducing bacteria(SRB),which obtain energy from dissimilatory sulfate reduction,play a vital role in the carbon and sulfur cycles.The dissimilatory sulfite reductase(Dsr),catalyzing the last step in the sulfate reduction pathway,has been found in all known SRB that have been tested so far.In this study,the diversity of SRB was investigated in the surface sediments from the adjacent area of Changjiang Estuary by PCR amplification,cloning and sequencing of the dissimilatory sulfite reductase beta subunit gene(dsr B).Based on dsr B clone libraries constructed in this study,diversified SRB were found,represented by 173 unique OTUs.Certain cloned sequences were associated with Desulfobacteraceae,Desulfobulbaceae,and a large fraction(60%) of novel sequences that have deeply branched groups in the dsr B tree,indicating that novel SRB inhabit the surface sediments.In addition,correlations of the SRB assemblages with environmental factors were analyzed by the linear model-based redundancy analysis(RDA).The result revealed that temperature,salinity and the content of TOC were most closely correlated with the SRB communities.More information on SRB community was obtained by applying the utility of Uni Frac to published dsr B gene sequences from this study and other 9 different kinds of marine environments.The results demonstrated that there were highly similar SRB genotypes in the marine and estuarine sediments,and that geographic positions and environmental factors influenced the SRB community distribution.展开更多
文摘The effects of surface cracks caused by underground coal mining on microhabitat in the rhizosphere of Artem&ia ordosias were studied based on field investigation and sample analysis. The results show that the amounts of microorganisms, enzyme activity and water content in soil vary with the biomass ofA. ordosias, and that the account exhibits in an order of large A. ordosias〉medium A. ordosias〉small A. ordosias. Surface cracks apparently decrease microbial quantities and enzymatic ac- tivities, and change the composition and structure of microbial community in the rhizosphere of A. ordosias. Surface cracks reduce water content and electrical conductivity, enhance the R/S (ratio of root and soil) of water content, electrical conductivity and pH value, and raise the content of Na and Pb in rhizosphere soil ofA. ordosicas, It can be concluded that the disturbance of underground coal mining on the microhabitat in the rhizosphere ofA. ordosica is obvious in the early days.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q07-04)the National Basic Research Priority Program of the Ministry of Science and Technology of China (No.2010CB428705)+2 种基金the Innovation Research Group Program of the Natural Science Foundation of China (No. 41121064)the Joint China-India Collaboration Project of the Natural Science Foundation of China (No.40811140535)the North Sea Environmental Monitoring Center (NSEMC) of the State Ocean Administration
文摘A large-scale bloom occurred from May to June in 2011 in sea area near Qinhuangdao of the Bohai Sea, leading to huge damage of the scallop culture industry. Similar blooms have been observed in this region for three years. The causative species of the bloom, which dominated the phytoplankton community with the maximum cell density around 109 cell/L, could not be identified with morphological features due to the small cell size (-2 μm). A pigment analytical method was then adopted to analyze the pigment profile of the phytoplankton samples collected from the blooming sea area. It was found that pico-sized (〈2 μm), nano-sized (2-20 μm), and bulk phytoplankton samples had similar pigment profile, representing the pigment signature of the bloom-causative species. The major pigments detected included 19-butanoyloxyfucoxanthin (But-fuco), fucoxanthin (Fuco), diadinoxanthin (Diad) and chlorophyll a (Chl a), and high content of But-fuco was the most significant characteristics of the phytoplankton samples. Based on the pigment composition and content, the bloom-causative species could be tentatively identified as pelagophyte, "type 8" group of haptophyte, or silicoflagellate. Some unique features of the bloom, such as the extremely high cell density, small-sized and But-fuco containing cells, occurring in early summer, and the feeding-cessation effects on scallops, suggest it be a "brown tide" event similar to those reported in the east coast of the United States of America. The recurrent "brown tide" events and their dramatic impacts on the shellfish mariculture industry in QirLhuangdao need close attention in the coming years.
基金Supported by the Key Knowledge Innovation Project of Chinese Academy of Science(Nos.KSCX2-EW-G-12,KZCX2-YW-JC201)the Natural Science Foundation of Shandong Province(Nos.ZR2009EQ004,JQ200914)+1 种基金the National Science & Technology Pillar Program of China(No.2008BAC49B01)the CAS International Innovation Partnership Program:Typical Environmental Process and Effects on Resources in Coastal Zone Area
文摘From May to August 2008, a large "green tide", consisting of the alga Ulva (Enteromorpha) prolifera, occurred in the Yellow Sea, China, affecting the local marine ecosystem and human activities. We investigated the influence of the green tide on the microbial community in the surface seawater, at four sites from July to August 2008, using bacterial 16S rRNA gene clone libraries. We sequenced 228 clones of unique patterns identified by restriction fragment length polymorphism (RFLP) techniques. The results show that 228 sequenced clones fell into six bacterial phyla:Proteobacteria, Bacteroidetes, Cyanobacteria, Verrucomicrobia, Actinobacteria, and Planctomycetes. Alphaproteobacteria (33%), Gammaproteobacteria (25%), Bacteroidetes (23%) and Cyanobacteria (9%) dominated the assemblage. Comparison between samples collected in July (during the tide) and those collected in August (after the tide) showed that, in the microbial community, diversities of Alphaproteobacteria and Cyanobacteria increased after the tide, while those of Gammaproteobacteria and Bacteroidetes decreased. These results indicate that the green tide influenced the growth of some bacteria, and provide information for further studies on the interactions and relationships between U. prolifera and the bacterial community. This study suggests that microbial community analysis is a good approach to monitoring green tides.
基金supported by the National Natural Science Foundation of China and the National Basic Research Program of China (973 program)(Nos.40920164004,2011CB403602,41375143)
文摘Sulfate-reducing bacteria(SRB),which obtain energy from dissimilatory sulfate reduction,play a vital role in the carbon and sulfur cycles.The dissimilatory sulfite reductase(Dsr),catalyzing the last step in the sulfate reduction pathway,has been found in all known SRB that have been tested so far.In this study,the diversity of SRB was investigated in the surface sediments from the adjacent area of Changjiang Estuary by PCR amplification,cloning and sequencing of the dissimilatory sulfite reductase beta subunit gene(dsr B).Based on dsr B clone libraries constructed in this study,diversified SRB were found,represented by 173 unique OTUs.Certain cloned sequences were associated with Desulfobacteraceae,Desulfobulbaceae,and a large fraction(60%) of novel sequences that have deeply branched groups in the dsr B tree,indicating that novel SRB inhabit the surface sediments.In addition,correlations of the SRB assemblages with environmental factors were analyzed by the linear model-based redundancy analysis(RDA).The result revealed that temperature,salinity and the content of TOC were most closely correlated with the SRB communities.More information on SRB community was obtained by applying the utility of Uni Frac to published dsr B gene sequences from this study and other 9 different kinds of marine environments.The results demonstrated that there were highly similar SRB genotypes in the marine and estuarine sediments,and that geographic positions and environmental factors influenced the SRB community distribution.