In order to teleport an unknown two-par-ticle entangled state via a cluster state, a controlled teleportation schelre is proposed. It is shown that an unknown two-particle entangled state can be successfully transmitt...In order to teleport an unknown two-par-ticle entangled state via a cluster state, a controlled teleportation schelre is proposed. It is shown that an unknown two-particle entangled state can be successfully transmitted from the sender Alice to the receiver Bob with the help of the supervisor Charlie via the only one four-particle cluster state. The receiver can reconstruct the teleported state according to the lmasurement results of the sender and supervisor. Quantum Controlled-NOT (CNOT) gate and POVM are used, which have been accom-plished in a quantum experiment, so it is believed that this scheme will be realized by experirnent. By analysis, the success probability of the proposed scheme reaches 1.0.展开更多
A scheme for controlled teleportation of an arbitrary two-particle state using a maximally entangled EPR pair and a cluster state as the quantum channel is proposed. After receiving Alice's Bell state measurement res...A scheme for controlled teleportation of an arbitrary two-particle state using a maximally entangled EPR pair and a cluster state as the quantum channel is proposed. After receiving Alice's Bell state measurement results, the controller performs a joint measurement on his particles under a non-maximally entangled Bell-basis. The receiver needs to introduce an auxiliary qubit, and performs a series of appropriate unitary transformations on his particles. The original state can be teleported successfully with the probability 2 cos2θ.展开更多
Polarization mode dispersion(PMD) is considered to be the ultimate limitation in high-speed optical fiber communication systems. Establishing an effective control algorithm for adaptive PMD compensation is a challengi...Polarization mode dispersion(PMD) is considered to be the ultimate limitation in high-speed optical fiber communication systems. Establishing an effective control algorithm for adaptive PMD compensation is a challenging task, because PMD possesses the time-varying and statistical properties. The particle swarm optimization(PSO) algorithm is introduced into self-adaptive PMD compensation as feedback control algorithm. The experiment results show that PSO-based control algorithm has some unique features of rapid convergence to the global optimum without being trapped in local sub-optima and good robustness to noise in the optical fiber transmission line that has never been achieved in PMD compensation before.展开更多
Behavior-based flocking has got remarkable attention in the recent past. The flocking algorithms can have inherent properties like organizing,healing and re-configuring for a distributed system. In this research we pr...Behavior-based flocking has got remarkable attention in the recent past. The flocking algorithms can have inherent properties like organizing,healing and re-configuring for a distributed system. In this research we presented the emergent flocking behavior-based control. We defined the basis behavior and with variety of combination, and obtained a complex group behavior flocking. Unlike classical flocking, we implemented additional rules obstacle avoidance,formation and seek target which results in V-formation flocking while avoiding obstacles. We performed the visual simulation of our flocking algorithm using MATLAB. The results concluded that the multi-boid flock could successfully navigate to the target while avoiding collisions. This can be applied to areas where we need to maximize the coverage of sensors or minimize the risk of combative attack,both in military and civilian scenarios.展开更多
The DeGroot model is a classic model to study consensus of opinion in a group of individuals(agents). Consensus can be achieved under some circumstances. But when the group reach consensus with a convergent opinion va...The DeGroot model is a classic model to study consensus of opinion in a group of individuals(agents). Consensus can be achieved under some circumstances. But when the group reach consensus with a convergent opinion value which is not what we expect, how can we intervene the system and change the convergent value? In this paper a mechanism named soft control is first introduced in opinion dynamics to guide the group's opinion when the population are given and evolution rules are not allowed to change. According to the idea of soft control, one or several special agents,called shills, are added and connected to one or several normal agents in the original group. Shills act and are treated as normal agents. The authors prove that the change of convergent opinion value is decided by the initial opinion and influential value of the shill, as well as how the shill connects to normal agents. An interesting and counterintuitive phenomenon is discovered: Adding a shill with an initial opinion value which is smaller(or larger) than the original convergent opinion value dose not necessarily decrease(or increase) the convergent opinion value under some conditions. These conditions are given through mathematical analysis and they are verified by the numerical tests. The authors also find out that the convergence speed of the system varies when a shill is connected to different normal agents. Our simulations show that it is positively related to the degree of the connected normal agent in scale-free networks.展开更多
In this paper,cluster synchronization in community network with nonidentical nodes and impulsive effects is investigated.Community networks with two kinds of topological structure are investigated.Positive weighted ne...In this paper,cluster synchronization in community network with nonidentical nodes and impulsive effects is investigated.Community networks with two kinds of topological structure are investigated.Positive weighted network is considered first and external pinning controllers are designed for achieving cluster synchronization.Cooperative and competitive network under some assumptions is investigated as well and can achieve cluster synchronization with only impulsive controllers.Based on the stability analysis of impulsive differential equation and the Lyapunov stability theory,several simple and useful synchronization criteria are derived.Finally,numerical simulations are provided to verify the effectiveness of the derived results.展开更多
基金The work was supported by the National Natural Science Foundation of China under Crant No. 61100205.
文摘In order to teleport an unknown two-par-ticle entangled state via a cluster state, a controlled teleportation schelre is proposed. It is shown that an unknown two-particle entangled state can be successfully transmitted from the sender Alice to the receiver Bob with the help of the supervisor Charlie via the only one four-particle cluster state. The receiver can reconstruct the teleported state according to the lmasurement results of the sender and supervisor. Quantum Controlled-NOT (CNOT) gate and POVM are used, which have been accom-plished in a quantum experiment, so it is believed that this scheme will be realized by experirnent. By analysis, the success probability of the proposed scheme reaches 1.0.
基金Supported by the National Natural Science Foundation of China under Grant No. 10774108the Foundation for University Key Young Teacher of Henan Province under Grant No. 2009GGJS-163
文摘A scheme for controlled teleportation of an arbitrary two-particle state using a maximally entangled EPR pair and a cluster state as the quantum channel is proposed. After receiving Alice's Bell state measurement results, the controller performs a joint measurement on his particles under a non-maximally entangled Bell-basis. The receiver needs to introduce an auxiliary qubit, and performs a series of appropriate unitary transformations on his particles. The original state can be teleported successfully with the probability 2 cos2θ.
基金National Natural Science Foundation of China(60577046) Cooperation Building Project of Beijing EducationCommittee(XK100130437)
文摘Polarization mode dispersion(PMD) is considered to be the ultimate limitation in high-speed optical fiber communication systems. Establishing an effective control algorithm for adaptive PMD compensation is a challenging task, because PMD possesses the time-varying and statistical properties. The particle swarm optimization(PSO) algorithm is introduced into self-adaptive PMD compensation as feedback control algorithm. The experiment results show that PSO-based control algorithm has some unique features of rapid convergence to the global optimum without being trapped in local sub-optima and good robustness to noise in the optical fiber transmission line that has never been achieved in PMD compensation before.
文摘Behavior-based flocking has got remarkable attention in the recent past. The flocking algorithms can have inherent properties like organizing,healing and re-configuring for a distributed system. In this research we presented the emergent flocking behavior-based control. We defined the basis behavior and with variety of combination, and obtained a complex group behavior flocking. Unlike classical flocking, we implemented additional rules obstacle avoidance,formation and seek target which results in V-formation flocking while avoiding obstacles. We performed the visual simulation of our flocking algorithm using MATLAB. The results concluded that the multi-boid flock could successfully navigate to the target while avoiding collisions. This can be applied to areas where we need to maximize the coverage of sensors or minimize the risk of combative attack,both in military and civilian scenarios.
基金supported by the National Natural Science Foundation of China under Grant No.61374168
文摘The DeGroot model is a classic model to study consensus of opinion in a group of individuals(agents). Consensus can be achieved under some circumstances. But when the group reach consensus with a convergent opinion value which is not what we expect, how can we intervene the system and change the convergent value? In this paper a mechanism named soft control is first introduced in opinion dynamics to guide the group's opinion when the population are given and evolution rules are not allowed to change. According to the idea of soft control, one or several special agents,called shills, are added and connected to one or several normal agents in the original group. Shills act and are treated as normal agents. The authors prove that the change of convergent opinion value is decided by the initial opinion and influential value of the shill, as well as how the shill connects to normal agents. An interesting and counterintuitive phenomenon is discovered: Adding a shill with an initial opinion value which is smaller(or larger) than the original convergent opinion value dose not necessarily decrease(or increase) the convergent opinion value under some conditions. These conditions are given through mathematical analysis and they are verified by the numerical tests. The authors also find out that the convergence speed of the system varies when a shill is connected to different normal agents. Our simulations show that it is positively related to the degree of the connected normal agent in scale-free networks.
基金Supported jointly by the Startup Fund for Ph.D of Jiangxi Normal University (3087)the Innovation Foundation for Graduate of Jiangxi Province
文摘In this paper,cluster synchronization in community network with nonidentical nodes and impulsive effects is investigated.Community networks with two kinds of topological structure are investigated.Positive weighted network is considered first and external pinning controllers are designed for achieving cluster synchronization.Cooperative and competitive network under some assumptions is investigated as well and can achieve cluster synchronization with only impulsive controllers.Based on the stability analysis of impulsive differential equation and the Lyapunov stability theory,several simple and useful synchronization criteria are derived.Finally,numerical simulations are provided to verify the effectiveness of the derived results.