Polymeric biosurfactants were prepared by the transesterification reaction between vinyl laurate (VILA) and carboxymethylcellulose (CMC). The reaction was performed in two different reaction media ((A) DMF/pTSA...Polymeric biosurfactants were prepared by the transesterification reaction between vinyl laurate (VILA) and carboxymethylcellulose (CMC). The reaction was performed in two different reaction media ((A) DMF/pTSA and (B) DMF/K2CO3) at various reaction conditions and using microwave radiation with controlled power as heating source. The obtained water-soluble VILA-CMC derivatives were characterized by FT-IR spectroscopy and their surface-active properties evaluated. All derivatives showed a very low esterification extent and moderate surface tension lowering effect. Nevertheless, they exhibited significant emulsifying efficiency comparable to that of the synthetic surfactant, Tween 20. The results suggested that suitable surface-active VILA-CMC derivatives can be prepared under microwave heating at low microwave power and reaction times in the range of few minutes, which represents a great advantage in comparison to transesterification reactions lasting up to 6 h at conventional heating.展开更多
文摘Polymeric biosurfactants were prepared by the transesterification reaction between vinyl laurate (VILA) and carboxymethylcellulose (CMC). The reaction was performed in two different reaction media ((A) DMF/pTSA and (B) DMF/K2CO3) at various reaction conditions and using microwave radiation with controlled power as heating source. The obtained water-soluble VILA-CMC derivatives were characterized by FT-IR spectroscopy and their surface-active properties evaluated. All derivatives showed a very low esterification extent and moderate surface tension lowering effect. Nevertheless, they exhibited significant emulsifying efficiency comparable to that of the synthetic surfactant, Tween 20. The results suggested that suitable surface-active VILA-CMC derivatives can be prepared under microwave heating at low microwave power and reaction times in the range of few minutes, which represents a great advantage in comparison to transesterification reactions lasting up to 6 h at conventional heating.