Glycerol carbonate was synthesized by the oxidative carbonylation of glycerol catalyzed by the commercial Pd/C with the aid of NaI. High conversion of glycerol (82.2%), selectivity to glycerol carbonate (〉99%), a...Glycerol carbonate was synthesized by the oxidative carbonylation of glycerol catalyzed by the commercial Pd/C with the aid of NaI. High conversion of glycerol (82.2%), selectivity to glycerol carbonate (〉99%), and TOF (900 h-1) were obtained under the conditions of 5 MPa (Pco:Po2 = 2:1), 140 C, 2 h. The highly active palladium species were generated in situ by dissolution from the carbon support and stabilized by re-deposition onto the support surface after the reaction was finished. Palladium dissolution and re-deposition were crucial and inherent parts of the catalytic cycle, which involved heterogeneous reactions. This Pd/C catalyst could be recycled and efficiently reused for four times with a gradual decrease in activity. Moreover, the in- fluences of various parameters, e.g., types of catalysts, solvents, additives, reaction temperature, pressure, and time on the conversion of glycerol were investigated. A reaction mechanism was proposed for oxidative carbonylation of glycerol to glyc- erol carbonate.展开更多
基金supported by the National Natural Science Foundation of China(20976101)the Program for Key Science&Technology Innovation Team of Shaanxi Province(2012KCT-21)the Program for Changjiang Scholars and Innovative Research Team in University of China(IRT1070)
文摘Glycerol carbonate was synthesized by the oxidative carbonylation of glycerol catalyzed by the commercial Pd/C with the aid of NaI. High conversion of glycerol (82.2%), selectivity to glycerol carbonate (〉99%), and TOF (900 h-1) were obtained under the conditions of 5 MPa (Pco:Po2 = 2:1), 140 C, 2 h. The highly active palladium species were generated in situ by dissolution from the carbon support and stabilized by re-deposition onto the support surface after the reaction was finished. Palladium dissolution and re-deposition were crucial and inherent parts of the catalytic cycle, which involved heterogeneous reactions. This Pd/C catalyst could be recycled and efficiently reused for four times with a gradual decrease in activity. Moreover, the in- fluences of various parameters, e.g., types of catalysts, solvents, additives, reaction temperature, pressure, and time on the conversion of glycerol were investigated. A reaction mechanism was proposed for oxidative carbonylation of glycerol to glyc- erol carbonate.