台湾暖流和长江冲淡水是东海西部环流的两个关键分量。台湾暖流起源于台湾海峡和黑潮,通常沿福建和浙江海岸向北流动(翁学传等,1984a;Su et al.,1987;Guan,1994)。与已形成于长江口外的长江冲淡水为特征的沿岸水相遇后,台湾暖流转向东北...台湾暖流和长江冲淡水是东海西部环流的两个关键分量。台湾暖流起源于台湾海峡和黑潮,通常沿福建和浙江海岸向北流动(翁学传等,1984a;Su et al.,1987;Guan,1994)。与已形成于长江口外的长江冲淡水为特征的沿岸水相遇后,台湾暖流转向东北,甚至转向东(Hu,1994)。冬季,长江冲淡水在一个非常窄的范围内沿海岸线向南流动。展开更多
Adenine is commonly used to establish the animal models for chronic kidney injury and its renal interstitial fibrosis. As an endogenous substance, adenine-induced kidney damage has not yet been fully studied and eluci...Adenine is commonly used to establish the animal models for chronic kidney injury and its renal interstitial fibrosis. As an endogenous substance, adenine-induced kidney damage has not yet been fully studied and elucidated, except for inflammatory reaction. Here we analyzed the proteomics of kidney of rats after adenine overloading using LS-MS/MS assay, and observed the role of anemoside B4(B4). The results showed that adenine could down-regulate 285 proteins and up-regulate 164 proteins in rat kidney tissue compared with the normal group. Down-regulated proteins mainly affected related pathways, such as energy metabolism, while up-regulated proteins affected inflammatory response pathways and metabolic pathways. B4 could significantly reverse the down-regulation of about 40 proteins, which were involved in mitochondria, redox processes, extracellular exosomes, acetylation and other signaling pathways. Simultaneously, B4 could inhibit the up-regulation of five proteins caused by adenine, which were involved in cell cycle, oocyte meiosis, PI3 K-Akt and other signaling pathways. Further experimental results of mRNA expression using real-time PCR assay supported the proteomic analysis. Therefore, we proposed that the damage of rat kidney caused by adenine was more complicated, not only with an inflammatory reaction, but also with extensive effects to various metabolic processes in the body. This work provided a valuable clue for comprehensive understanding of adenine-induced renal damage.展开更多
文摘台湾暖流和长江冲淡水是东海西部环流的两个关键分量。台湾暖流起源于台湾海峡和黑潮,通常沿福建和浙江海岸向北流动(翁学传等,1984a;Su et al.,1987;Guan,1994)。与已形成于长江口外的长江冲淡水为特征的沿岸水相遇后,台湾暖流转向东北,甚至转向东(Hu,1994)。冬季,长江冲淡水在一个非常窄的范围内沿海岸线向南流动。
基金National Innovative Drugs 13th Five-Year Major Special Project of China(Grant No.2018ZX09301030-002)
文摘Adenine is commonly used to establish the animal models for chronic kidney injury and its renal interstitial fibrosis. As an endogenous substance, adenine-induced kidney damage has not yet been fully studied and elucidated, except for inflammatory reaction. Here we analyzed the proteomics of kidney of rats after adenine overloading using LS-MS/MS assay, and observed the role of anemoside B4(B4). The results showed that adenine could down-regulate 285 proteins and up-regulate 164 proteins in rat kidney tissue compared with the normal group. Down-regulated proteins mainly affected related pathways, such as energy metabolism, while up-regulated proteins affected inflammatory response pathways and metabolic pathways. B4 could significantly reverse the down-regulation of about 40 proteins, which were involved in mitochondria, redox processes, extracellular exosomes, acetylation and other signaling pathways. Simultaneously, B4 could inhibit the up-regulation of five proteins caused by adenine, which were involved in cell cycle, oocyte meiosis, PI3 K-Akt and other signaling pathways. Further experimental results of mRNA expression using real-time PCR assay supported the proteomic analysis. Therefore, we proposed that the damage of rat kidney caused by adenine was more complicated, not only with an inflammatory reaction, but also with extensive effects to various metabolic processes in the body. This work provided a valuable clue for comprehensive understanding of adenine-induced renal damage.