This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating the surface in an unsteady regime using electrically resistant strips embedded in the wing ski...This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating the surface in an unsteady regime using electrically resistant strips embedded in the wing skin. The control of the boundary layer's separation and transition point will provide a reduction in friction drag, and hence a reduction in fuel consumption. This new method consists in applying the required thermal power in the different strips in order to ensure the desired temperatures on the aircraft wing. We also have to determine the optimum size of these strips (length, width and distance between two strips). This implies finding the best mathematical model corresponding to the physics enabling us to facilitate the calculation for any type of material used for the wings. Secondly, the heating being unsteady, and, as during a flight the flow conditions or the ambient temperatures vary, the thermal power needed changes and must be chosen as fast as possible in order to ensure optimal operating conditions.展开更多
The influences due to several AVIs (airfoil-vortex interactions) are studied by using a two-dimensional CFD (computational fluid dynamics) method. The primary goal of this effort is to assess the variation of vort...The influences due to several AVIs (airfoil-vortex interactions) are studied by using a two-dimensional CFD (computational fluid dynamics) method. The primary goal of this effort is to assess the variation of vortex center location and vortex circulation associated with sequential AVI toward an improvement of the hybrid method of CFD and prescribed wake model, which closely relates to predicting the BVI (blade-vortex interaction) noise radiated from a helicopter rotor. The representative of sequential AVI is performed by single vortex and two airfoils. Investigations with respect to vortex center location and vortex circulation after AVIs have been made by varying the miss-distance, which is the vertical distance between the airfoil leading edge and the vortex center. Correlations between miss-distance and vorticity field show that there exists complicated vortex wake flow with several vortices newly induced in 1st AVI. The pressure fluctuation amplitude clarifies that the intensity in 2nd AV1 is significantly low compared to the intensity in 1st AVI due to the influence of vortex dissipation. Simulations turned out to modify the vortex center location represented by the hybrid method using an offset value for a streamwise direction and to dissipate the vortex circulation for improving the accuracy of BVI noise prediction.展开更多
A second-order optimized monotonicity-preserving MUSCL scheme(OMUSCL2) is developed based on the dispersion and dissipation optimization and monotonicity-preserving technique.The new scheme(OMUSCL2) is simple in expre...A second-order optimized monotonicity-preserving MUSCL scheme(OMUSCL2) is developed based on the dispersion and dissipation optimization and monotonicity-preserving technique.The new scheme(OMUSCL2) is simple in expression and is easy for use in CFD codes.Compared with the original second-order or third-order MUSCL scheme,the new scheme shows nearly the same CPU cost and higher resolution to shockwaves and small-scale waves.This new scheme has been tested through a set of one-dimensional and two-dimensional tests,including the Shu-Osher problem,the Sod problem,the Lax problem,the two-dimensional double Mach reflection and the RAE2822 transonic airfoil test.All numerical tests show that,compared with the original MUSCL schemes,the new scheme causes fewer dispersion and dissipation errors and produces higher resolution.展开更多
Predicting wind turbine S825 airfoil's aerodynamic performance is crucial to improving its energy efficiency and reducing its environmental impact. In this paper, a numerical simulation on the wind turbine S825 airfo...Predicting wind turbine S825 airfoil's aerodynamic performance is crucial to improving its energy efficiency and reducing its environmental impact. In this paper, a numerical simulation on the wind turbine S825 airfoil is con- ducted with k-to turbulence model at different attack angles. By comparing with experimental data, a new method of modifying k-to model is proposed. A modifying function is proposed to limit the production term in ω equation based on fluid rotation and deformation. This method improves turbulent viscosity and decreases separating re- gion when the airfoil works at large separating conditions. The predictive accuracy could be improved by using the modified k-to turbulence model.展开更多
文摘This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating the surface in an unsteady regime using electrically resistant strips embedded in the wing skin. The control of the boundary layer's separation and transition point will provide a reduction in friction drag, and hence a reduction in fuel consumption. This new method consists in applying the required thermal power in the different strips in order to ensure the desired temperatures on the aircraft wing. We also have to determine the optimum size of these strips (length, width and distance between two strips). This implies finding the best mathematical model corresponding to the physics enabling us to facilitate the calculation for any type of material used for the wings. Secondly, the heating being unsteady, and, as during a flight the flow conditions or the ambient temperatures vary, the thermal power needed changes and must be chosen as fast as possible in order to ensure optimal operating conditions.
文摘The influences due to several AVIs (airfoil-vortex interactions) are studied by using a two-dimensional CFD (computational fluid dynamics) method. The primary goal of this effort is to assess the variation of vortex center location and vortex circulation associated with sequential AVI toward an improvement of the hybrid method of CFD and prescribed wake model, which closely relates to predicting the BVI (blade-vortex interaction) noise radiated from a helicopter rotor. The representative of sequential AVI is performed by single vortex and two airfoils. Investigations with respect to vortex center location and vortex circulation after AVIs have been made by varying the miss-distance, which is the vertical distance between the airfoil leading edge and the vortex center. Correlations between miss-distance and vorticity field show that there exists complicated vortex wake flow with several vortices newly induced in 1st AVI. The pressure fluctuation amplitude clarifies that the intensity in 2nd AV1 is significantly low compared to the intensity in 1st AVI due to the influence of vortex dissipation. Simulations turned out to modify the vortex center location represented by the hybrid method using an offset value for a streamwise direction and to dissipate the vortex circulation for improving the accuracy of BVI noise prediction.
基金supported by the National Natural Science Foundation of China (Grant Nos.10632050,10872205,11072248)the National Basic Research Program of China (Grant No.2009CB724100)+1 种基金the National High Technology Research and Development Program of China (Grant No.2009AA010A139)the Chinese Academy Sciences Program (Grant No.KJCX 2-EW-J01)
文摘A second-order optimized monotonicity-preserving MUSCL scheme(OMUSCL2) is developed based on the dispersion and dissipation optimization and monotonicity-preserving technique.The new scheme(OMUSCL2) is simple in expression and is easy for use in CFD codes.Compared with the original second-order or third-order MUSCL scheme,the new scheme shows nearly the same CPU cost and higher resolution to shockwaves and small-scale waves.This new scheme has been tested through a set of one-dimensional and two-dimensional tests,including the Shu-Osher problem,the Sod problem,the Lax problem,the two-dimensional double Mach reflection and the RAE2822 transonic airfoil test.All numerical tests show that,compared with the original MUSCL schemes,the new scheme causes fewer dispersion and dissipation errors and produces higher resolution.
基金supported by the National Natural Science Foundation of China(No.51420105008,No.51376001)the National Basic Research Program of China(2012CB720205,2014CB046405)
文摘Predicting wind turbine S825 airfoil's aerodynamic performance is crucial to improving its energy efficiency and reducing its environmental impact. In this paper, a numerical simulation on the wind turbine S825 airfoil is con- ducted with k-to turbulence model at different attack angles. By comparing with experimental data, a new method of modifying k-to model is proposed. A modifying function is proposed to limit the production term in ω equation based on fluid rotation and deformation. This method improves turbulent viscosity and decreases separating re- gion when the airfoil works at large separating conditions. The predictive accuracy could be improved by using the modified k-to turbulence model.