An approach for web server cluster(WSC)reliability and degradation process analysis is proposed.The reliability process is modeled as a non-homogeneous Markov process(NHMH)composed of several non-homogeneous Poisson p...An approach for web server cluster(WSC)reliability and degradation process analysis is proposed.The reliability process is modeled as a non-homogeneous Markov process(NHMH)composed of several non-homogeneous Poisson processes(NHPPs).The arrival rate of each NHPP corresponds to the system software failure rate which is expressed using Cox s proportional hazards model(PHM)in terms of the cumulative and instantaneous load of the software.The cumulative load refers to software cumulative execution time,and the instantaneous load denotes the rate that the users requests arrive at a server.The result of reliability analysis is a time-varying reliability and degradation process over the WSC lifetime.Finally,the evaluation experiment shows the effectiveness of the proposed approach.展开更多
The development of flexible transparent electrodes for next generation devices has been appointed as the major topic in carbon electronics research for the next five years. Among all candidate materials tested to date...The development of flexible transparent electrodes for next generation devices has been appointed as the major topic in carbon electronics research for the next five years. Among all candidate materials tested to date, graphene and graphene based nanocomposites have shown the highest performance. Although some incipient anti-oxidation tests have been reported, in-deep ageing studies to assess the reliability of carbon-based electrodes have never been performed before. In this work, we present a disruptive methodology to assess the ageing mechanisms of graphene electrodes, which is also extensible to other carbon- based and two-dimensional materials. After performing accelerated oxidative tests, we exhaustively analyze the yield of the electrodes combining nanoscale and device level experiments with Weibull probabilistic analyses and tunneling current simulation, based on the Fowler-Nordheim/Direct-Tunneling models. Our experiments and calculations reveal that an ultra-thin oxide layer can be formed on the pristine surface of graphene. We quantitatively analyze the consequences of this layer on the properties of the electrodes, and observed a change in the conduction mode at the interface (from Ohmic to Schottky), an effect that should be considered in the design of future graphene-based devices. Future mass production of carbon-based devices should include similar reliability studies, and the methodologies presented here (including the accelerated tests, characterization and modeling) may help other scientists to move from lab prototypes towards industrial device production.展开更多
基金The National Natural Science Foundation of China(No.61402333,61402242)the National Science Foundation of Tianjin(No.15JCQNJC00400)
文摘An approach for web server cluster(WSC)reliability and degradation process analysis is proposed.The reliability process is modeled as a non-homogeneous Markov process(NHMH)composed of several non-homogeneous Poisson processes(NHPPs).The arrival rate of each NHPP corresponds to the system software failure rate which is expressed using Cox s proportional hazards model(PHM)in terms of the cumulative and instantaneous load of the software.The cumulative load refers to software cumulative execution time,and the instantaneous load denotes the rate that the users requests arrive at a server.The result of reliability analysis is a time-varying reliability and degradation process over the WSC lifetime.Finally,the evaluation experiment shows the effectiveness of the proposed approach.
文摘The development of flexible transparent electrodes for next generation devices has been appointed as the major topic in carbon electronics research for the next five years. Among all candidate materials tested to date, graphene and graphene based nanocomposites have shown the highest performance. Although some incipient anti-oxidation tests have been reported, in-deep ageing studies to assess the reliability of carbon-based electrodes have never been performed before. In this work, we present a disruptive methodology to assess the ageing mechanisms of graphene electrodes, which is also extensible to other carbon- based and two-dimensional materials. After performing accelerated oxidative tests, we exhaustively analyze the yield of the electrodes combining nanoscale and device level experiments with Weibull probabilistic analyses and tunneling current simulation, based on the Fowler-Nordheim/Direct-Tunneling models. Our experiments and calculations reveal that an ultra-thin oxide layer can be formed on the pristine surface of graphene. We quantitatively analyze the consequences of this layer on the properties of the electrodes, and observed a change in the conduction mode at the interface (from Ohmic to Schottky), an effect that should be considered in the design of future graphene-based devices. Future mass production of carbon-based devices should include similar reliability studies, and the methodologies presented here (including the accelerated tests, characterization and modeling) may help other scientists to move from lab prototypes towards industrial device production.