期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
GaN MIS-HEMT偏置温度不稳定性表征和寿命预测
1
作者 高汭 王斌 +6 位作者 赵鹏 林晓玲 章晓文 贺致远 陈义强 路国光 黄云 《电子产品可靠性与环境试验》 2022年第S02期42-46,共5页
MIS-HEMT是最有前景的GaN HEMT器件结构之一,其通过引入高势垒的绝缘介质层,可以极大地抑制栅极泄漏电流,从而降低静态功耗。然而,额外的绝缘介质层在绝缘介质层和AlGaN界面处引入了大量的缺陷,使得MIS-HEMT的可靠性非常差,在偏置电压... MIS-HEMT是最有前景的GaN HEMT器件结构之一,其通过引入高势垒的绝缘介质层,可以极大地抑制栅极泄漏电流,从而降低静态功耗。然而,额外的绝缘介质层在绝缘介质层和AlGaN界面处引入了大量的缺陷,使得MIS-HEMT的可靠性非常差,在偏置电压下的阈值电压的漂移极大,即偏置温度不稳定性(BTI)老化严重。与硅不同,GaN MIS-HEMT中绝大多数的缺陷都属于可恢复缺陷,随着栅极电压的变化可以反复地充放电,因此其BTI的恢复效应要远大于硅。采用单点I_(d)测量方法,将GaN MIS-HEMT阈值电压(V_(th))的测量从传统直流(DC)法的秒级缩短到了1 ms,构建了考虑恢复效应的GaN MIS-HEMT的BTI老化物理模型,预测了器件的寿命。试验结果表明,传统DC法严重地低估了BTI退化,在ΔV_(th)=1 V的失效判据下,传统DC法预测的器件寿命比考虑恢复效应的单点I_(d)法测得的寿命高了4个数量级。 展开更多
关键词 氮化镓 金属介质半导体 高电子迁移率晶体管 偏置温度不稳定性 恢复效应 老化物理模型 寿命预测
下载PDF
Correlation of Cooperatively Localized Rearrangement on the "Fluidized Domain" of Polymers to Their Nonexponentially Viscoelastic Behaviors at Double Aging Processes (I): A Set of Reduced Universal Equations on the Stress Relaxation Modulus and Creep Comp
2
作者 刘颖 宋名实 +2 位作者 金艳 胡桂贤 吴大鸣 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第1期45-64,I0001,共21页
Based on the structure of glass (or liquid) polymers consisting of α-domain, β-co-domain, and entanglement constituent chain networks, and the nonexponentially viscoelastic behavior, a “heterophase fluctuation” ... Based on the structure of glass (or liquid) polymers consisting of α-domain, β-co-domain, and entanglement constituent chain networks, and the nonexponentially viscoelastic behavior, a “heterophase fluctuation” model was proposed. It was found that the dynamics of cooperative rearrangement on the “fluidized domain” has a great shear rate, domain size, and temperature dependences. When the shear rate, domain size, and temperature dependences were taken account into the cooperatively localized rearrangement on the fluidized domain by the degradation of primary α-domain and the reformation of secondary β-co-domain constituent chains. A new dynamic theory of cooperatively localized rearrangement on the fluidized domain constituent chains with different size and different network chain length during physical and mechanical aging was established. The total viscoelastic free en-ergy of deformation resulting from the change in conformations of α-domain, β-co-domain, crytallite, crosslinked, and trapped entanglement constituent chains during aging processes was calculated by the combining method of kinetics and statistical mechanics. The constitu- tive equations and reduced stress relaxation modulus and creep compliances for three types of polymers were also derived. Finally, two reduced universal equations on creep compliance and stress relaxation modulus with a non-linear and two nonexponential parameters α and β were theoretically derived from the dynamic theory and a statistically extended mode coupling theory for double aging effects of polymers was developed. Results show that the two reduced universal equations have the same form as Kohlraush-Williams-Watts (K-W-W) stretched exponential function. The nonlinearity and the nonexponentiality are, respectively, originated from the memory effects of nonthermal and thermal history. The correlation of nonlinearity, α and β to the aging time, aging temperature, and the mesomorphic structure of fluidized domains was also established. 展开更多
关键词 Heterophrase fluctuation model Kinetics of aging Dynamics of de-aging Creep and stress relaxation K-W-W decay function Fluidized domain constituent chain
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部