Clinical therapies of pluripotent stem cells (PSCs)-based transplantation have been hindered by frequent development of terato- mas or tumors in animal models and clinical patients. Therefore, clarifying the mechani...Clinical therapies of pluripotent stem cells (PSCs)-based transplantation have been hindered by frequent development of terato- mas or tumors in animal models and clinical patients. Therefore, clarifying the mechanism of carcinogenesis in stem cell therapy is of great importance for reducing the risk of tumorigenicity. Here we differentiate Oct4-GFP mouse embryonic stem cells (mESCs) into neural progenitor cells (NPCs) and find that a minority of Oct4+ cells are continuously sustained at Oct4+ state. These cells can be enriched and proliferated in a standard ESC medium. Interestingly, the differentiation potential of these enriched cells is tightly restricted with much higher tumorigenic activity, which are thus defined as differentiation-resistant ESCs (DR-ESCs). Transcriptomic and epigenomic analyses show that DR-ESCs are characterized by primordial germ cell-like gene sig- natures (Dazl, Rec8, Stro8, BUmp1, etc.) and specific epigenetic patterns distinct from mESCs. Moreover, the DR-ESCs possess germ cell potential to generate Sycp3+ haploid cells and are able to reside in sperm-free spermaduct induced by busulfan. Finally, we find that TGFβ signaling is overactivated in DR-ESCs, and inhibition of TGFβ signaling eliminates the tumorigenicity of mESC-derived NPCs by inducing the full differentiation of DR-ESCs. These data demonstrate that these TGFβ-hyperactivated germ ceU-like DR-ESCs are the main contributor for the tumorigenicity of ESCs-derived target cell therapy and that inhibition of TGFβ signaling in ESC-derived NPC transplantation could drastically reduce the risk of tumor development. Keywords: embryonic stem cells, differentiation-resistant ESCs, tumorigenicity, germ cell, TGFβ signaling展开更多
基金This work was supported in part by the Hundred Talent Program of Guangzhou University and the National Natural Science Foundation of China (31501178), as well as by the 'Strategic Priority Research Program' of the Chinese Academy of Sciences (XDA16020501 and XDA16020404), the National Key Basic Research and Development Program of China (2017YFA0102700, 2015CB964500, and 2014CB964804), and the National Natural Science Foundation of China (31661143042, 91519314, 31630043, 31571513, and 31430058).
文摘Clinical therapies of pluripotent stem cells (PSCs)-based transplantation have been hindered by frequent development of terato- mas or tumors in animal models and clinical patients. Therefore, clarifying the mechanism of carcinogenesis in stem cell therapy is of great importance for reducing the risk of tumorigenicity. Here we differentiate Oct4-GFP mouse embryonic stem cells (mESCs) into neural progenitor cells (NPCs) and find that a minority of Oct4+ cells are continuously sustained at Oct4+ state. These cells can be enriched and proliferated in a standard ESC medium. Interestingly, the differentiation potential of these enriched cells is tightly restricted with much higher tumorigenic activity, which are thus defined as differentiation-resistant ESCs (DR-ESCs). Transcriptomic and epigenomic analyses show that DR-ESCs are characterized by primordial germ cell-like gene sig- natures (Dazl, Rec8, Stro8, BUmp1, etc.) and specific epigenetic patterns distinct from mESCs. Moreover, the DR-ESCs possess germ cell potential to generate Sycp3+ haploid cells and are able to reside in sperm-free spermaduct induced by busulfan. Finally, we find that TGFβ signaling is overactivated in DR-ESCs, and inhibition of TGFβ signaling eliminates the tumorigenicity of mESC-derived NPCs by inducing the full differentiation of DR-ESCs. These data demonstrate that these TGFβ-hyperactivated germ ceU-like DR-ESCs are the main contributor for the tumorigenicity of ESCs-derived target cell therapy and that inhibition of TGFβ signaling in ESC-derived NPC transplantation could drastically reduce the risk of tumor development. Keywords: embryonic stem cells, differentiation-resistant ESCs, tumorigenicity, germ cell, TGFβ signaling