Flooding events tend to destroy the original flood-intolerant vegetation in riparian zones,but the flood-tolerant species can confront the stress,and contribute to the riparian ecosystem.Grass species,Hemarthria altis...Flooding events tend to destroy the original flood-intolerant vegetation in riparian zones,but the flood-tolerant species can confront the stress,and contribute to the riparian ecosystem.Grass species,Hemarthria altissima,are usually dominant in the riparian zones.This species is considered as good forage which is usually grazed by livestock or mowed by local people.Therefore,the apical tissues of the plants are often removed,and the plants have to grow without stem apexes,during their life cycle.In this study,we aimed to examine the differences in growth performance of intact versus apex-cut individuals of H.altissima upon complete submergence.Two groups of H.altissima plants(with and without shoot apexes)were treated with dark non-submergence and dark complete submergence conditions for 200 days.During the experiment,we measured plant growth,biomass changes in plant organs,and the consumption of non-structural carbohydrates(NSC)by different tissues.During submergence,shoot elongation stopped,and around six lateral buds were developed averagely by each plant without apexes.This growth performance finally caused 60%decline of NSC in underground parts.The relatively intensive consumption of carbohydrates in submerged apex-removed plants induced the 21%stem length decreased under water,which indicated the decreasing submergence tolerance of plants with shoot apex removed.Therefore,we suggest that when using H.altissima for restoring degraded riparian ecosystems,the shoot apexes should be protected from grazing by livestock or harvesting by local people in order to maintain the submergence tolerance of H.altissima.展开更多
基金National Natural Science Foundation of China(31070474,30770406)National Basic Research Program of China(973 Pro-gram)(2012CB723205)+1 种基金Profitless Scientific Institutes Elementary Research Funds of the Institute Subtropical Forestry,CAF(RISF6160)Fundamental Research Funds for the Central Universities(XDJK2013A003)
基金supported by National Natural Science Foundation of China(grant numbers U22A20448,31800331,31400480,31770465)National Key R&D Program of China(grant number 2023YFF1305204)+2 种基金Chongqing Talents Program(grant number cstc2021ycjh-bgzxm0316)the Fundamental Research Funds for the Central Universities(grant number SWU-KT23001)Science Foundation of School of Life Sciences SWU(grant numbers 20212017050401,20212005393901).
文摘Flooding events tend to destroy the original flood-intolerant vegetation in riparian zones,but the flood-tolerant species can confront the stress,and contribute to the riparian ecosystem.Grass species,Hemarthria altissima,are usually dominant in the riparian zones.This species is considered as good forage which is usually grazed by livestock or mowed by local people.Therefore,the apical tissues of the plants are often removed,and the plants have to grow without stem apexes,during their life cycle.In this study,we aimed to examine the differences in growth performance of intact versus apex-cut individuals of H.altissima upon complete submergence.Two groups of H.altissima plants(with and without shoot apexes)were treated with dark non-submergence and dark complete submergence conditions for 200 days.During the experiment,we measured plant growth,biomass changes in plant organs,and the consumption of non-structural carbohydrates(NSC)by different tissues.During submergence,shoot elongation stopped,and around six lateral buds were developed averagely by each plant without apexes.This growth performance finally caused 60%decline of NSC in underground parts.The relatively intensive consumption of carbohydrates in submerged apex-removed plants induced the 21%stem length decreased under water,which indicated the decreasing submergence tolerance of plants with shoot apex removed.Therefore,we suggest that when using H.altissima for restoring degraded riparian ecosystems,the shoot apexes should be protected from grazing by livestock or harvesting by local people in order to maintain the submergence tolerance of H.altissima.