The effects of H3PO4 and Ca(H2PO4)2 on compressive strength, water resistance, hydration process of thermally decomposed magnesium oxychloride cement (TDMOC) pastes were studied. The mineral composition, hydration...The effects of H3PO4 and Ca(H2PO4)2 on compressive strength, water resistance, hydration process of thermally decomposed magnesium oxychloride cement (TDMOC) pastes were studied. The mineral composition, hydration products and hydration heat release were analyzed by XRD, FT-IR, SEM and TAM air isothermal calorimeter, etc. After being modified by H3PO4 and Ca(HzPO4)2, the properties of the TDMOC are improved obviously. The compressive strength increases from 14.8 MPa to 48.1 MPa and 37.1 MPa, respectively. The strength retention coefficient (Kn) increases from 0.38 to 0.99 and 0.94, respectively. The 24 h hydration heat release decreases by 10% and 4% and the time of hydration peak appearing is delayed from 1 h to about 10 h. The XRD, FT-IR and SEM results show that the main composition is 5Mg(OH)z'MgCIz'8H20 in the modified TDMOC pastes. The possible mechanism for the strength enhancement was discussed. The purposes are to extend the potential applications of the salt lake magnesium resources and to improve the mechanical properties of TDMOC.展开更多
This study aims to evaluate the performance of silica fume(SF)and nano-silica(NS)on enhancing the sulfuric acid resistance of mortar mixtures.The NS and SF were added as substitutions for cement at various dosages.The...This study aims to evaluate the performance of silica fume(SF)and nano-silica(NS)on enhancing the sulfuric acid resistance of mortar mixtures.The NS and SF were added as substitutions for cement at various dosages.The cured samples were immersed in the sulfuric acid solution with a pH of 2 for 75 d.A compressive strength test and absorption and voids tests were conducted before sulfuric acid immersion.It was found that the addition of SF and NS reduced the volume of permeable voids and increased compressive strength.A thermo-gravimetric analysis was carried out to investigate the hydration of mixtures.The mixtures with SF showed a higher level of pozzolanic reaction compared with mixtures with NS.After the 75 d of immersion,the mixtures with 5%SF and 1%NS showed the best resistance against sulfuric acid because they showed the lowest mass change and length change.展开更多
An equivalent amount of metallurgical slag, water-quenched slag powder and activator was substituted for a part of cement to prepare concretes at strength grades ofC25, C30 and C40. Thanks to the filling effect, pozzo...An equivalent amount of metallurgical slag, water-quenched slag powder and activator was substituted for a part of cement to prepare concretes at strength grades ofC25, C30 and C40. Thanks to the filling effect, pozzolanic effect, raicro-aggregate effect, and improvement of pore structure, the prepared concretes not only had greater strength compared with reference concrete, but also had greater impermeability and frost-resistance. Moreover, the expansion reactions between alkali and aggregates were effectively inhibited. The slag and activator can serve as the raw materials for green concretes.展开更多
Cement improves properties of soil materials, such as durability, stiffness, strength and moisture susceptibility. Each of them needs different cement contents that might not be suitable for other properties. Typicall...Cement improves properties of soil materials, such as durability, stiffness, strength and moisture susceptibility. Each of them needs different cement contents that might not be suitable for other properties. Typically, high cement content is desirable for durability, but not for shrinkage and cracking issues on the surface. Thus, improving durability with low cement content while complying with other requirements is an ideal aim, which may be achieved by pozzolanic supplementary products. Pozzolans contribute in hydration reactions and optimise cement consumptions in favour of durable and low shrinkage products. In this paper, the mixes of nano-silica and fly ash are considered to investigate their effect on strength, durability and shrinkage of modified CRB (crushed rock base) material. In the end, the benefits and features of nano-silica as a pozzolanic material will be focused and discussed more for effective cement consumption in soils.展开更多
Calcium sulfoaluminate cement(CSAC),first developed in China in the 1970 s,has received significant attention because of its expansive(or shrinkage-compensating)and rapid-hardening characteristics,low energy-intensity...Calcium sulfoaluminate cement(CSAC),first developed in China in the 1970 s,has received significant attention because of its expansive(or shrinkage-compensating)and rapid-hardening characteristics,low energy-intensity,and low carbon emissions.The production and hydration of CSAC(containing ye’elimite,belite,calcium sulfate,and minors)have been extensively studied,but aspects of its durability are not well understood.Due to its composition and intrinsic characteristics,CSAC concrete is expected to have better performance than Portland cement(PC)concrete in several aspects,including shrinkage and cracking due to restrained shrinkage,freeze-thaw damage,alkali-silica reaction,and sulfate attack.However,there is a lack of consensus among researchers regarding transport properties,resistance to carbonation,and steel corrosion protectiveness of CSAC concrete,all of which are expected to be tied to the chemical composition of CSAC and attributes of the service environments.For example,CASC concrete has poorer resistance to carbonation and chloride penetration compared with its PC counterpart,yet some studies have suggested that it protects steel rebar well from corrosion when exposed to a marine tidal zone,because of a strong self-desiccation effect.This paper presents a succinct review of studies of the durability of CSAC concrete.We suggest that more such studies should be conducted to examine the long-term performance of the material in different service environments.Special emphasis should be given to carbonation and steel rebar corrosion,so as to reveal the underlying deterioration mechanisms and establish means to improve the performance of CSAC concrete against such degradation processes.展开更多
基金Project(B0210)supported by One Hundred Talent Project of Chinese Academy of SciencesProject(2008-G-158)supported by Science and Technology Tackling Key Program of Qinghai Province,China
文摘The effects of H3PO4 and Ca(H2PO4)2 on compressive strength, water resistance, hydration process of thermally decomposed magnesium oxychloride cement (TDMOC) pastes were studied. The mineral composition, hydration products and hydration heat release were analyzed by XRD, FT-IR, SEM and TAM air isothermal calorimeter, etc. After being modified by H3PO4 and Ca(HzPO4)2, the properties of the TDMOC are improved obviously. The compressive strength increases from 14.8 MPa to 48.1 MPa and 37.1 MPa, respectively. The strength retention coefficient (Kn) increases from 0.38 to 0.99 and 0.94, respectively. The 24 h hydration heat release decreases by 10% and 4% and the time of hydration peak appearing is delayed from 1 h to about 10 h. The XRD, FT-IR and SEM results show that the main composition is 5Mg(OH)z'MgCIz'8H20 in the modified TDMOC pastes. The possible mechanism for the strength enhancement was discussed. The purposes are to extend the potential applications of the salt lake magnesium resources and to improve the mechanical properties of TDMOC.
基金Project(NSERC RGPIN-2017-05537)supported by the Natural Sciences and Engineering Research Council of Canada。
文摘This study aims to evaluate the performance of silica fume(SF)and nano-silica(NS)on enhancing the sulfuric acid resistance of mortar mixtures.The NS and SF were added as substitutions for cement at various dosages.The cured samples were immersed in the sulfuric acid solution with a pH of 2 for 75 d.A compressive strength test and absorption and voids tests were conducted before sulfuric acid immersion.It was found that the addition of SF and NS reduced the volume of permeable voids and increased compressive strength.A thermo-gravimetric analysis was carried out to investigate the hydration of mixtures.The mixtures with SF showed a higher level of pozzolanic reaction compared with mixtures with NS.After the 75 d of immersion,the mixtures with 5%SF and 1%NS showed the best resistance against sulfuric acid because they showed the lowest mass change and length change.
文摘An equivalent amount of metallurgical slag, water-quenched slag powder and activator was substituted for a part of cement to prepare concretes at strength grades ofC25, C30 and C40. Thanks to the filling effect, pozzolanic effect, raicro-aggregate effect, and improvement of pore structure, the prepared concretes not only had greater strength compared with reference concrete, but also had greater impermeability and frost-resistance. Moreover, the expansion reactions between alkali and aggregates were effectively inhibited. The slag and activator can serve as the raw materials for green concretes.
文摘Cement improves properties of soil materials, such as durability, stiffness, strength and moisture susceptibility. Each of them needs different cement contents that might not be suitable for other properties. Typically, high cement content is desirable for durability, but not for shrinkage and cracking issues on the surface. Thus, improving durability with low cement content while complying with other requirements is an ideal aim, which may be achieved by pozzolanic supplementary products. Pozzolans contribute in hydration reactions and optimise cement consumptions in favour of durable and low shrinkage products. In this paper, the mixes of nano-silica and fly ash are considered to investigate their effect on strength, durability and shrinkage of modified CRB (crushed rock base) material. In the end, the benefits and features of nano-silica as a pozzolanic material will be focused and discussed more for effective cement consumption in soils.
基金the National Science Foundation of the United States(Nos.1932690 and 1761697)。
文摘Calcium sulfoaluminate cement(CSAC),first developed in China in the 1970 s,has received significant attention because of its expansive(or shrinkage-compensating)and rapid-hardening characteristics,low energy-intensity,and low carbon emissions.The production and hydration of CSAC(containing ye’elimite,belite,calcium sulfate,and minors)have been extensively studied,but aspects of its durability are not well understood.Due to its composition and intrinsic characteristics,CSAC concrete is expected to have better performance than Portland cement(PC)concrete in several aspects,including shrinkage and cracking due to restrained shrinkage,freeze-thaw damage,alkali-silica reaction,and sulfate attack.However,there is a lack of consensus among researchers regarding transport properties,resistance to carbonation,and steel corrosion protectiveness of CSAC concrete,all of which are expected to be tied to the chemical composition of CSAC and attributes of the service environments.For example,CASC concrete has poorer resistance to carbonation and chloride penetration compared with its PC counterpart,yet some studies have suggested that it protects steel rebar well from corrosion when exposed to a marine tidal zone,because of a strong self-desiccation effect.This paper presents a succinct review of studies of the durability of CSAC concrete.We suggest that more such studies should be conducted to examine the long-term performance of the material in different service environments.Special emphasis should be given to carbonation and steel rebar corrosion,so as to reveal the underlying deterioration mechanisms and establish means to improve the performance of CSAC concrete against such degradation processes.