Microarc oxidation (MAO) process was conducted on AZ91D magnesium alloy in an electrolyte composed of NazSiO3, NaAlO2, NaEB4O7, NaOH, C3H803 and C6H5Na307 by AC pulse electrical source. The surface and cross-section...Microarc oxidation (MAO) process was conducted on AZ91D magnesium alloy in an electrolyte composed of NazSiO3, NaAlO2, NaEB4O7, NaOH, C3H803 and C6H5Na307 by AC pulse electrical source. The surface and cross-sectional morphologies, film thickness, chemical composition and structure of the coatings were characterized by scanning electron microscopy(SEM), layer thickness metry, energy disperse spectroscopy(EDS) and X-ray diffraction(XRD). The corrosiofi resistances of the coatings in a 3.5% NaC1 neutral solution were evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The results showed that an optimized electrolyte with a composition of 15 g/L NazSiO3, 9 g/L NaA102, 2 g/L NazB407, 3 g/L NaOH, 5 mL/L C3H803 and 7 g/LC,HsNa307 was developed by means of orthogonal experiment. The coating obtained in the optimized electrolyte had a dense structure and revealed a lower current density, decreased by two orders of magnitude as compared with the magnesium substrate. Meanwhile, the corrosive potentials of the coated samples increased nearly by 73 inV. EIS result showed that the corrosion resistance of the coating was mainly determined by the inner dense layer. The coating primarily contained elements Mg, Al, O and Si and XRD analyses indicated that the coating was mainly composed of MgO, Mg2SiO4 and MgAl204.展开更多
Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid...Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid nitrogen-assisted cooling(LNSC) was carried out to get the higher cooling rate and improve the surface properties. The experimental results were compared with those of Ar gas protection at room temperature. The samples after LSM with LNSC resulted in a thinner melted layer, a highly homogeneous, refined melted microstructure and formed a lot of worm-like nanocrystals and local amorphous structures. Microhardness of the melted layer with LNAC was improved to HV 90-148 as compared to HV 65-105 of the samples with Ar gas protection. The corrosion resistance of the melted layer in a 3.5% Na Cl solution(mass fraction) was improved because of the grain refinement and redistribution of β-Mg17Al12 phases following rapid quenching associated with the process.展开更多
The potentiostatic electrodeposition of Zn-Ni-Mn was carried out in an alkaline solution with the addition of Mn salt.The effects of electrolyte Mn2+concentration and deposition potential on the surface morphology,pha...The potentiostatic electrodeposition of Zn-Ni-Mn was carried out in an alkaline solution with the addition of Mn salt.The effects of electrolyte Mn2+concentration and deposition potential on the surface morphology,phase structure and corrosion behavior of coatings were studied.The results of corrosion polarization showed that the presence of higher Mn content in Zn-Ni-Mn coatings could lead to the formation of a good passive layer with a 7-fold increase in Rp of coating and a significant decrease in the corrosion current density compared to those of Zn-Ni coating.The XRD and the XPS analyses from the surface of Zn-Ni-Mn after corrosion test showed that the passive layer was composed of zinc hydroxide chloride,zinc oxide,zinc hydroxide carbonate,and manganese oxides.展开更多
The authors have studied the motion mechanism of the magnetic fluid in a reciprocating seal gap,on the basis of which the authors obtain an anti pressure formula of the reciprocating shaft magnetic fluid seal from gen...The authors have studied the motion mechanism of the magnetic fluid in a reciprocating seal gap,on the basis of which the authors obtain an anti pressure formula of the reciprocating shaft magnetic fluid seal from general Navier Stokes equation.In order to verify the correctness of the anti pressure formula,the authors have calculated the magnetic field distribution of seal structure and have gotten the maximum still anti pressure.Finally,the authors have verified the influence of speed and stroke on the seal anti pressure.展开更多
AZ80 magnesium alloys were deformed at 200,250,300,350 and 400℃ with different deformation degree of 50%,75%, 83%,87%and 90%,respectively.The corrosion properties of different deformed AZ80 samples were studied by ga...AZ80 magnesium alloys were deformed at 200,250,300,350 and 400℃ with different deformation degree of 50%,75%, 83%,87%and 90%,respectively.The corrosion properties of different deformed AZ80 samples were studied by galvanic test in 3.5%NaCl solution.The results show that plastic deformation could improve the corrosion resistance of AZ80 alloy;and the corrosion rate of AZ80 deformed at 250℃ with the deformation degree of 83%was the lowest,which was 33%of the as-cast AZ80 alloy.Further studies of the microstructure show that the refined grain size and continuously distribution ofβphase around the grain boundary did have a positive effect on the improvement of corrosion resistance of AZ80 alloys.For AZ80 alloys,the smaller the grain size is,the more homogeneous the structure is,and the better the corrosion resistance is.展开更多
Aim The objectives of the present study were to prepare stealthy vincristine plus quinacrine liposomes and evaluate the pharmacokinetics in Sprague-Dawley rats. Methods Anti-resistant stealthy liposomes were prepared ...Aim The objectives of the present study were to prepare stealthy vincristine plus quinacrine liposomes and evaluate the pharmacokinetics in Sprague-Dawley rats. Methods Anti-resistant stealthy liposomes were prepared by incorporating vincristine with quinacrine together using the ammonium sulfate gradient loading procedure. For the pharmacokinetic study, Sprague-Dawley rats were divided into two groups: each rat in the Group Ⅰwas administered intravenously via tail vein as stealthy liposomal vincristine plus quinacrine, and the Group Ⅱ similarly given as a mixture solution of free vincristine plus free quinacrine. The concentrations of vincristine and quinacrine in plasma were measured by HPLC with diode array detection and fluorescence detection, respectively. Results The mean particle size of stealthy liposomes was 135.9 ±7.1 nm and the encapsulation efficiencies of stealthy liposomes were 〉 90% for vincristine, and 〉 85% for quinacrine, respectively. Administered as the stealthy vincristine plus quinacrine liposomes, the plasma exposures of both vincristine and quinacrine were significantly extended, and the mean concentrations of both vincristine and quinacrine were significantly higher compared to those given as the mixture solution of free vincristine plus free quinacrine. The Cmax, t1/2, AUC0-24 h values of vincristine for stealthy liposomal group were significantly increased, but the total clearance Cl values decreased, as compared to those of free drug group, respectively. Similarly, the Cmax, t1/2 and AUC0-24 h values of quinacrine for the stealthy liposomal group were significantly increased, but the total clearance C1 values decreased, as compared to those of free quinacrine. Conclusion The anti-resistant stealthy liposomes are successfully prepared by incorporating vincristine with quinacrine, and the liposomes extend significantly the duration in blood circulation and improve evidently the plasma concentrations of both vincristine and quinacrine.展开更多
The alloy (AI-Cu-Mg) alloy important one dating back to the series (2xxx) where copper foundries basic element which represents the number (2), the study relied on foundries add elements boron (B) and titanium...The alloy (AI-Cu-Mg) alloy important one dating back to the series (2xxx) where copper foundries basic element which represents the number (2), the study relied on foundries add elements boron (B) and titanium (Ti) and then use a heat treatment (homogenizing process) to improve the corrosion resistance in saline (NaC1 3.5%) of the base alloy (A1-Cu-Mg), was prepared four types of alloys (A, B, C, D) depending on the chemical composition. The results showed that the corrosion resistance in saline solution was the best resistance in the alloy (D) (A1-2% Cu-2% Mg-0.1% B-1.0% Ti) compared with the rest of bullion when an examination of corrosion of the alloy prepared after homogenizing. But by examining the surface roughness of the alloy ingot turned out that (D) is softer than the rest of the surface alloys and this is due to the addition of boron and titanium together increases surface smoothness in alloys because it works to reduce the grain size.展开更多
Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by s...Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD), respectively. The corrosion resistance of MAO coatings was evaluated by electrochemical potentiodynamic polarization in 5% (mass fraction) NaCl solution. The results show that when KMnO4 is added into base electrolyte, the growth speed of oxide coatings is increased obviously. The main phase of oxide coatings is Al2O3, and the contents of MnO2 and MnEA104 phases are increased at the top of oxide coatings with increasing the concentration of KMnO4. The solute elements participate in forming the oxide coatings. When a proper concentration of KMnO4 (2.5 g/L) is added into the base solution, the micropores of the MAO coatings are small and compact, and the corrosion resistance of oxide coatings is increased largely.展开更多
Liquid nitriding of Cll0 steel was conducted in a wide range of temperatures (400-670 ℃) using a kind of chemical heat-treatments, and the hardness, mechanical and corrosion properties of the nitrided surface were ...Liquid nitriding of Cll0 steel was conducted in a wide range of temperatures (400-670 ℃) using a kind of chemical heat-treatments, and the hardness, mechanical and corrosion properties of the nitrided surface were evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly depended on the processing condition. When C 110 steel was subjected to liquid nitriding at 430 ℃, the nitrided layer was almost composed of a thin e-Fe2-3N layer. When C 110 steel was subjected to liquid nitriding at 640 ℃, the phase composition of the nitrided layer was greatly changed. The nitrided layer depth increased significantly with increasing the treating temperature. The liquid nitriding effectively improved the surface hardness. After liquid nitriding, the absorption energy of the treated sample decreased and the tensile strength increased by Charpy V-notch (CVN) test. But the elongation of treated sample decreased. The reason is that the nitrided layer of sample is hardened and there is brittlement by diffusion of nitrogen atom. Despite of treatment temperature, the liquid nitriding can improve the corrosion. After being nitrided at 430 ℃, the nitrided layer of the C110 steel was mainly composed by e-Fe2 3N, which has excellent corrosion resistance and high microhardness, the nitrided sample has the best corrosion resistance. After nitriding temperature over 580 ℃, especially at 680 ℃, the sample's surface was covered by the thick oxide layer, which has very low hardness and corrosion resistance. So, the corrosion resistance of samples is severely compromised.展开更多
A single drug chemotherapy fails to eliminate residual cancer cells due to the existence of the multidrug resistance (MDR). In the present study, we aimed to develop a compound epirubicin plus quinine injection, to ...A single drug chemotherapy fails to eliminate residual cancer cells due to the existence of the multidrug resistance (MDR). In the present study, we aimed to develop a compound epirubicin plus quinine injection, to characterize the efficacy in treatment of the drug-resistant breast cancer, and to reveal the involved mechanisms. The HPLC-UV methods were developed for quantifications, and the evaluations were performed on the drug-resistant human breast cancer MCF-7/adr cells using a high content screening system. Results demonstrated that the compound epirubicin plus quinine injection was able to effectively block the drug efflux, exhibiting an evidently overall efficacy in treatment of the resistant breast cancer cells by direct killing effect and by apoptosis-inducing effect. In the formulation, quinine played multiple roles in blocking drug efflux and in inducing the apoptosis of the resistant breast cancer cells. The apoptosis signaling pathways were associated with a cascade of reactions by activating Caspase family and by inhibiting Bcl-2 family. In conclusion, the present study preliminarily revealed the efficacy and mechanism of the compound epirubicin plus quinine formulation in treatment of the drug-resistant breast cancer, and offered a potential strategy to overcome drug resistance in cancer treatments.展开更多
The influence of pre-oxidation on the liquid zinc corrosion resistance of high Nb-TiAl alloys was investigated. The pre-oxidation was performed by heating the specimens, buried in silica powder and encapsulated in a s...The influence of pre-oxidation on the liquid zinc corrosion resistance of high Nb-TiAl alloys was investigated. The pre-oxidation was performed by heating the specimens, buried in silica powder and encapsulated in a silica tube under a vacuum of 1.3x10-5 Pa at 950℃ for 12 h. Experimental results showed that the preoxidized sample exhibited much higher liquid zinc corrosion resistance than that for the comparative samples. This excellent liquid zinc corrosion resistance was attributed to the formation of high-quality oxide scale during peroxidation. The corrosion of all the samples in liquid zinc was caused by a localized breakdown in the oxide scales. The continuous and dense oxide scale formed during preoxidation substantially may prevent the liquid zinc from diffusing to the substrate, and its good continuity may also reduce the possibility of localized breakdown in the oxide scale.展开更多
基金Project (12504230006) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘Microarc oxidation (MAO) process was conducted on AZ91D magnesium alloy in an electrolyte composed of NazSiO3, NaAlO2, NaEB4O7, NaOH, C3H803 and C6H5Na307 by AC pulse electrical source. The surface and cross-sectional morphologies, film thickness, chemical composition and structure of the coatings were characterized by scanning electron microscopy(SEM), layer thickness metry, energy disperse spectroscopy(EDS) and X-ray diffraction(XRD). The corrosiofi resistances of the coatings in a 3.5% NaC1 neutral solution were evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The results showed that an optimized electrolyte with a composition of 15 g/L NazSiO3, 9 g/L NaA102, 2 g/L NazB407, 3 g/L NaOH, 5 mL/L C3H803 and 7 g/LC,HsNa307 was developed by means of orthogonal experiment. The coating obtained in the optimized electrolyte had a dense structure and revealed a lower current density, decreased by two orders of magnitude as compared with the magnesium substrate. Meanwhile, the corrosive potentials of the coated samples increased nearly by 73 inV. EIS result showed that the corrosion resistance of the coating was mainly determined by the inner dense layer. The coating primarily contained elements Mg, Al, O and Si and XRD analyses indicated that the coating was mainly composed of MgO, Mg2SiO4 and MgAl204.
基金Project(51305292)supported by the National Natural Science Foundation of ChinaProject(2014-024)supported by Shanxi Scholarship Council of China
文摘Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid nitrogen-assisted cooling(LNSC) was carried out to get the higher cooling rate and improve the surface properties. The experimental results were compared with those of Ar gas protection at room temperature. The samples after LSM with LNSC resulted in a thinner melted layer, a highly homogeneous, refined melted microstructure and formed a lot of worm-like nanocrystals and local amorphous structures. Microhardness of the melted layer with LNAC was improved to HV 90-148 as compared to HV 65-105 of the samples with Ar gas protection. The corrosion resistance of the melted layer in a 3.5% Na Cl solution(mass fraction) was improved because of the grain refinement and redistribution of β-Mg17Al12 phases following rapid quenching associated with the process.
文摘The potentiostatic electrodeposition of Zn-Ni-Mn was carried out in an alkaline solution with the addition of Mn salt.The effects of electrolyte Mn2+concentration and deposition potential on the surface morphology,phase structure and corrosion behavior of coatings were studied.The results of corrosion polarization showed that the presence of higher Mn content in Zn-Ni-Mn coatings could lead to the formation of a good passive layer with a 7-fold increase in Rp of coating and a significant decrease in the corrosion current density compared to those of Zn-Ni coating.The XRD and the XPS analyses from the surface of Zn-Ni-Mn after corrosion test showed that the passive layer was composed of zinc hydroxide chloride,zinc oxide,zinc hydroxide carbonate,and manganese oxides.
基金National Natural Science F oundation of China(No.59705004)
文摘The authors have studied the motion mechanism of the magnetic fluid in a reciprocating seal gap,on the basis of which the authors obtain an anti pressure formula of the reciprocating shaft magnetic fluid seal from general Navier Stokes equation.In order to verify the correctness of the anti pressure formula,the authors have calculated the magnetic field distribution of seal structure and have gotten the maximum still anti pressure.Finally,the authors have verified the influence of speed and stroke on the seal anti pressure.
基金Projects(50605059,50735005)supported by the National Natural Science Foundation of ChinaProject(2008062)supported by Shanxi Province Foundation for Returness
文摘AZ80 magnesium alloys were deformed at 200,250,300,350 and 400℃ with different deformation degree of 50%,75%, 83%,87%and 90%,respectively.The corrosion properties of different deformed AZ80 samples were studied by galvanic test in 3.5%NaCl solution.The results show that plastic deformation could improve the corrosion resistance of AZ80 alloy;and the corrosion rate of AZ80 deformed at 250℃ with the deformation degree of 83%was the lowest,which was 33%of the as-cast AZ80 alloy.Further studies of the microstructure show that the refined grain size and continuously distribution ofβphase around the grain boundary did have a positive effect on the improvement of corrosion resistance of AZ80 alloys.For AZ80 alloys,the smaller the grain size is,the more homogeneous the structure is,and the better the corrosion resistance is.
基金National Natural Science Foundation of China(No.30572260).
文摘Aim The objectives of the present study were to prepare stealthy vincristine plus quinacrine liposomes and evaluate the pharmacokinetics in Sprague-Dawley rats. Methods Anti-resistant stealthy liposomes were prepared by incorporating vincristine with quinacrine together using the ammonium sulfate gradient loading procedure. For the pharmacokinetic study, Sprague-Dawley rats were divided into two groups: each rat in the Group Ⅰwas administered intravenously via tail vein as stealthy liposomal vincristine plus quinacrine, and the Group Ⅱ similarly given as a mixture solution of free vincristine plus free quinacrine. The concentrations of vincristine and quinacrine in plasma were measured by HPLC with diode array detection and fluorescence detection, respectively. Results The mean particle size of stealthy liposomes was 135.9 ±7.1 nm and the encapsulation efficiencies of stealthy liposomes were 〉 90% for vincristine, and 〉 85% for quinacrine, respectively. Administered as the stealthy vincristine plus quinacrine liposomes, the plasma exposures of both vincristine and quinacrine were significantly extended, and the mean concentrations of both vincristine and quinacrine were significantly higher compared to those given as the mixture solution of free vincristine plus free quinacrine. The Cmax, t1/2, AUC0-24 h values of vincristine for stealthy liposomal group were significantly increased, but the total clearance Cl values decreased, as compared to those of free drug group, respectively. Similarly, the Cmax, t1/2 and AUC0-24 h values of quinacrine for the stealthy liposomal group were significantly increased, but the total clearance C1 values decreased, as compared to those of free quinacrine. Conclusion The anti-resistant stealthy liposomes are successfully prepared by incorporating vincristine with quinacrine, and the liposomes extend significantly the duration in blood circulation and improve evidently the plasma concentrations of both vincristine and quinacrine.
文摘The alloy (AI-Cu-Mg) alloy important one dating back to the series (2xxx) where copper foundries basic element which represents the number (2), the study relied on foundries add elements boron (B) and titanium (Ti) and then use a heat treatment (homogenizing process) to improve the corrosion resistance in saline (NaC1 3.5%) of the base alloy (A1-Cu-Mg), was prepared four types of alloys (A, B, C, D) depending on the chemical composition. The results showed that the corrosion resistance in saline solution was the best resistance in the alloy (D) (A1-2% Cu-2% Mg-0.1% B-1.0% Ti) compared with the rest of bullion when an examination of corrosion of the alloy prepared after homogenizing. But by examining the surface roughness of the alloy ingot turned out that (D) is softer than the rest of the surface alloys and this is due to the addition of boron and titanium together increases surface smoothness in alloys because it works to reduce the grain size.
基金Project(2008BAE63B00) supported by the National Key Technologies Research and Development Program of China
文摘Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD), respectively. The corrosion resistance of MAO coatings was evaluated by electrochemical potentiodynamic polarization in 5% (mass fraction) NaCl solution. The results show that when KMnO4 is added into base electrolyte, the growth speed of oxide coatings is increased obviously. The main phase of oxide coatings is Al2O3, and the contents of MnO2 and MnEA104 phases are increased at the top of oxide coatings with increasing the concentration of KMnO4. The solute elements participate in forming the oxide coatings. When a proper concentration of KMnO4 (2.5 g/L) is added into the base solution, the micropores of the MAO coatings are small and compact, and the corrosion resistance of oxide coatings is increased largely.
基金Projects(51471112,51611130204)supported by the National Natural Science Foundation of China
文摘Liquid nitriding of Cll0 steel was conducted in a wide range of temperatures (400-670 ℃) using a kind of chemical heat-treatments, and the hardness, mechanical and corrosion properties of the nitrided surface were evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly depended on the processing condition. When C 110 steel was subjected to liquid nitriding at 430 ℃, the nitrided layer was almost composed of a thin e-Fe2-3N layer. When C 110 steel was subjected to liquid nitriding at 640 ℃, the phase composition of the nitrided layer was greatly changed. The nitrided layer depth increased significantly with increasing the treating temperature. The liquid nitriding effectively improved the surface hardness. After liquid nitriding, the absorption energy of the treated sample decreased and the tensile strength increased by Charpy V-notch (CVN) test. But the elongation of treated sample decreased. The reason is that the nitrided layer of sample is hardened and there is brittlement by diffusion of nitrogen atom. Despite of treatment temperature, the liquid nitriding can improve the corrosion. After being nitrided at 430 ℃, the nitrided layer of the C110 steel was mainly composed by e-Fe2 3N, which has excellent corrosion resistance and high microhardness, the nitrided sample has the best corrosion resistance. After nitriding temperature over 580 ℃, especially at 680 ℃, the sample's surface was covered by the thick oxide layer, which has very low hardness and corrosion resistance. So, the corrosion resistance of samples is severely compromised.
基金National Natural Science Foundation of China(Grant No.81172991 and 81373343)
文摘A single drug chemotherapy fails to eliminate residual cancer cells due to the existence of the multidrug resistance (MDR). In the present study, we aimed to develop a compound epirubicin plus quinine injection, to characterize the efficacy in treatment of the drug-resistant breast cancer, and to reveal the involved mechanisms. The HPLC-UV methods were developed for quantifications, and the evaluations were performed on the drug-resistant human breast cancer MCF-7/adr cells using a high content screening system. Results demonstrated that the compound epirubicin plus quinine injection was able to effectively block the drug efflux, exhibiting an evidently overall efficacy in treatment of the resistant breast cancer cells by direct killing effect and by apoptosis-inducing effect. In the formulation, quinine played multiple roles in blocking drug efflux and in inducing the apoptosis of the resistant breast cancer cells. The apoptosis signaling pathways were associated with a cascade of reactions by activating Caspase family and by inhibiting Bcl-2 family. In conclusion, the present study preliminarily revealed the efficacy and mechanism of the compound epirubicin plus quinine formulation in treatment of the drug-resistant breast cancer, and offered a potential strategy to overcome drug resistance in cancer treatments.
基金supported by the National Natural Science Foundation of China (Grant No. 50871127)the National Basic Research Program of China ("973" Project) (Grant No. 2011CB605500)
文摘The influence of pre-oxidation on the liquid zinc corrosion resistance of high Nb-TiAl alloys was investigated. The pre-oxidation was performed by heating the specimens, buried in silica powder and encapsulated in a silica tube under a vacuum of 1.3x10-5 Pa at 950℃ for 12 h. Experimental results showed that the preoxidized sample exhibited much higher liquid zinc corrosion resistance than that for the comparative samples. This excellent liquid zinc corrosion resistance was attributed to the formation of high-quality oxide scale during peroxidation. The corrosion of all the samples in liquid zinc was caused by a localized breakdown in the oxide scales. The continuous and dense oxide scale formed during preoxidation substantially may prevent the liquid zinc from diffusing to the substrate, and its good continuity may also reduce the possibility of localized breakdown in the oxide scale.